Patents by Inventor Shinichi Yamagata
Shinichi Yamagata has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 9199433Abstract: There is provided a metal laminated structure comprising a first metal layer, a second metal layer and a third metal layer, the first metal layer being disposed on one surface of the second metal layer, the third metal layer being disposed on the other surface of the second metal layer, the first metal layer including at least one of tungsten and molybdenum, the second metal layer including copper, the third metal layer including at least one of tungsten and molybdenum, and a method for producing the metal laminated structure.Type: GrantFiled: June 8, 2010Date of Patent: December 1, 2015Assignees: SUMITOMO ELECTRIC INDUSTRIES, LTD., A.L.M.T. CORP.Inventors: Koji Nitta, Masatoshi Majima, Shinji Inazawa, Yugaku Abe, Hiroshi Yokoyama, Osamu Suwata, Shinichi Yamagata
-
Patent number: 8993121Abstract: There is provided a metal laminated structure in which a first metal layer containing tungsten is provided on a first surface of a second metal layer containing copper and a third metal layer containing tungsten is provided on a second surface of the second metal layer opposite to the first surface, and the first metal layer contains crystal grains of tungsten in a form of a columnar crystal extending in a direction perpendicular to the first surface of the second metal layer and the third metal layer contains crystal grains of tungsten in a form of a columnar crystal extending in a direction perpendicular to the second surface of the second metal layer, and a method for producing the metal laminated structure.Type: GrantFiled: December 27, 2010Date of Patent: March 31, 2015Assignees: Sumitomo Electric Industries, Ltd., A.L.M.T. Corp.Inventors: Koji Nitta, Shinji Inazawa, Akihisa Hosoe, Masatoshi Majima, Osamu Suwata, Hiroshi Yokoyama, Shinichi Yamagata, Yugaku Abe
-
Publication number: 20120315502Abstract: There is provided a metal laminated structure in which a first metal layer containing tungsten is provided on a first surface of a second metal layer containing copper and a third metal layer containing tungsten is provided on a second surface of the second metal layer opposite to the first surface, and the first metal layer contains crystal grains of tungsten in a form of a columnar crystal extending in a direction perpendicular to the first surface of the second metal layer and the third metal layer contains crystal grains of tungsten in a form of a columnar crystal extending in a direction perpendicular to the second surface of the second metal layer, and a method for producing the metal laminated structure.Type: ApplicationFiled: December 27, 2010Publication date: December 13, 2012Applicants: A.L.M.T. Corp., Sumitomo Electric Industries, Ltd.Inventors: Koji Nitta, Shinji Inazawa, Akihisa Hosoe, Masatoshi Majima, Osamu Suwata, Hiroshi Yokoyama, Shinichi Yamagata, Yugaku Abe
-
Publication number: 20120100392Abstract: There is provided a metal laminated structure comprising a first metal layer, a second metal layer and a third metal layer, the first metal layer being disposed on one surface of the second metal layer, the third metal layer being disposed on the other surface of the second metal layer, the first metal layer including at least one of tungsten and molybdenum, the second metal layer including copper, the third metal layer including at least one of tungsten and molybdenum, and a method for producing the metal laminated structure.Type: ApplicationFiled: June 8, 2010Publication date: April 26, 2012Applicants: Sumitomo Electric Industries, Ltd., A.L.M.T Corp.Inventors: Koji Nitta, Masatoshi Majima, Shinji Inazawa, Yugaku Abe, Hiroshi Yokoyama, Osamu Suwata, Shinichi Yamagata
-
Patent number: 6974558Abstract: To provide a substrate material made of an aluminum/silicon carbide composite alloy which has a thermal conductivity of 100 W/m×K or higher and a thermal expansion coefficient of 20×10?6/° C. or lower and is lightweight and compositionally homogeneous. A substrate material made of an aluminum/silicon carbide composite ally which comprises Al—SiC alloy composition parts and non alloy composition part and dispersed therein from 10 to 70% by weight silicon carbide particles, and in which the fluctuations of silicon carbide concentration in the Al—SiC alloy composition parts therein are within 1% by weight. The substrate material is produced by sintering a compact of an aluminum/silicon carbide starting powder at a temperature not lower than 600° C. in a non-oxidizing atmosphere.Type: GrantFiled: August 10, 2001Date of Patent: December 13, 2005Assignee: Sumotomo Electric Industries, Ltd.Inventors: Shinichi Yamagata, Yugaku Abe, Makoto Imamura, Akira Fukui, Yoshishige Takano, Takatoshi Takikawa, Yoshiyuki Hirose
-
Publication number: 20050025654Abstract: To provide a substrate material made of an aluminum/silicon carbide composite alloy which has a thermal conductivity of 100 W/m×K or higher and a thermal expansion coefficient of 20×10?6/° C. or lower and is lightweight and compositionally homogeneous. A substrate material made of an aluminum/silicon carbide composite ally which comprises Al—SiC alloy composition parts and non alloy composition part and dispersed therein from 10 to 70% by weight silicon carbide particles, and in which the fluctuations of silicon carbide concentration in the Al—SiC alloy composition parts therein are within 1% by weight. The substrate material is produced by sintering a compact of an aluminum/silicon carbide starting powder at a temperature not lower than 600° C. in a non-oxidizing atmosphere.Type: ApplicationFiled: August 24, 2004Publication date: February 3, 2005Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.Inventors: Shinichi Yamagata, Yugaku Abe, Makoto Imamura, Akira Fukui, Yoshishige Takano, Takatoshi Takikawa, Yoshiyuki Hirose
-
Patent number: 6737168Abstract: A composite material that consists mainly of ceramic and semi-metal, that is high in thermal conductivity, that is light in weight, and that has high compatibility in coefficient of thermal expansion (CTE) with a semiconductor element and another member comprising ceramic; a member comprising this composite material; and a semiconductor device comprising the member. The composite material has a structure in which the interstices of a three-dimensional network structure comprising ceramic are filled with a semi-metal-containing constituent produced by deposition after melting, has a CTE of 6 ppm/° C. or less, and has a thermal conductivity of 150 W/m·K or more. The semiconductor device comprises the composite material. The composite material can be obtained by filling the pores of a porous body consisting mainly of ceramic with a semi-metal-containing constituent.Type: GrantFiled: February 14, 2001Date of Patent: May 18, 2004Assignee: Sumitomo Electric Industries, Ltd.Inventors: Shinichi Yamagata, Kazuya Kamitake, Yugaku Abe, Akira Fukui
-
Patent number: 6534190Abstract: To provide a substrate material made of an aluminum/silicon carbide composite alloy which has a thermal conductivity of 100 W/m×K or higher and a thermal expansion coefficient of 20×10−6/° C. or lower and is lightweight and compositionally homogeneous. A substrate material made of an aluminum/silicon carbide composite ally which comprises Al—SiC alloy composition parts and non alloy composition part and dispersed therein from 10 to 70% by weight silicon carbide particles, and in which the fluctuations of silicon carbide concentration in the Al—SiC alloy composition parts therein are within 1% by weight. The substrate material is produced by sintering a compact of an aluminum/silicon carbide starting powder at a temperature not lower than 600° C. in a non-oxidizing atmosphere.Type: GrantFiled: May 6, 2002Date of Patent: March 18, 2003Assignee: Sumitomo Electric Industries, Ltd.Inventors: Shinichi Yamagata, Yugaku Abe, Makoto Imamura, Akira Fukui, Yoshishige Takano, Takatoshi Takikawa, Yoshiyuki Hirose
-
Patent number: 6388273Abstract: To provide a substrate material made of an aluminum/silicon carbide composite alloy which has a thermal conductivity of 100 W/m×K or higher and a thermal expansion coefficient of 20×10−6/° C. or lower and is lightweight and compositionally homogeneous. A substrate material made of an aluminum/silicon carbide composite ally which comprises Al—SiC alloy composition parts and non alloy composition part and dispersed therein from 10 to 70% by weight silicon carbide particles, and in which the fluctuations of silicon carbide concentration in the Al—SiC alloy composition parts therein are within 1% by weight. The substrate material is produced by sintering a compact of an aluminum/silicon carbide starting powder at a temperature not lower than 600° C. in a non-oxidizing atmosphere.Type: GrantFiled: October 20, 2000Date of Patent: May 14, 2002Assignee: Sumitomo Electric Industries, Ltd.Inventors: Shinichi Yamagata, Yugaku Abe, Makoto Imamura, Akira Fukui, Yoshishige Takano, Takatoshi Takikawa, Yoshiyuki Hirose
-
Publication number: 20020034651Abstract: To provide a substrate material made of an aluminum/silicon carbide composite alloy which has a thermal conductivity of 100 W/m×K or higher and a thermal expansion coefficient of 20×10−6/° C. or lower and is lightweight and compositionally homogeneous. A substrate material made of an aluminum/silicon carbide composite ally which comprises Al—SiC alloy composition parts and non alloy composition part and dispersed therein from 10 to 70% by weight silicon carbide particles, and in which the fluctuations of silicon carbide concentration in the Al—SiC alloy composition parts therein are within 1% by weight. The substrate material is produced by sintering a compact of an aluminum/silicon carbide starting powder at a temperature not lower than 600° C. in a non-oxidizing atmosphere.Type: ApplicationFiled: August 10, 2001Publication date: March 21, 2002Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTDInventors: Shinichi Yamagata, Yugaku Abe, Makoto Imamura, Akira Fukui, Yoshishige Takano, Takatoshi Takikawa, Yoshiyuki Hirose
-
Patent number: 6183874Abstract: To provide a substrate material made of an aluminum/silicon carbide composite alloy which has a thermal conductivity of 100 W/m×K or higher and a thermal expansion coefficient of 20×10−6/° C. or lower and is lightweight and compositionally homogeneous. A substrate material made of an aluminum/silicon carbide composite ally which comprises Al—SiC alloy composition parts and non alloy composition part and dispersed therein from 10 to 70% by weight silicon carbide particles, and in which the fluctuations of silicon carbide concentration in the Al—SiC alloy composition parts therein are within 1% by weight. The substrate material is produced by sintering a compact of an aluminum/silicon carbide starting powder at a temperature not lower than 600° C. in a non-oxidizing atmosphere.Type: GrantFiled: June 13, 1997Date of Patent: February 6, 2001Assignee: Sumitomo Electric Industries, Ltd.Inventors: Shinichi Yamagata, Yugaku Abe, Makoto Imamura, Akira Fukui, Yoshishige Takano, Takatoshi Takikawa, Yoshiyuki Hirose
-
Patent number: 5911637Abstract: A golf club, which can increase the carry of a ball without increasing the shaft length, has a hollow head in which are mounted a weight and a mechanism for resiliently pressing the weight against the inner surface of the face of the head. In one embodiment, during a forward swing of the club, the weight separates while compressing a spring due to static inertia. When the head impacts the ball, the face dents momentarily and the weight hits against the dented face.Type: GrantFiled: November 12, 1997Date of Patent: June 15, 1999Inventor: Shinichi Yamagata
-
Patent number: 5424256Abstract: Silicon nitride sintered bodies consisting of prismatic crystal grains of Si.sub.3 N.sub.4 and/or sialon, equi-axed crystal grains of Si.sub.3 N.sub.4 and/or sialon, a grain boundary phase existing among the prismatic and equi-axed crystal grains and dispersed particles in the grain boundary phase, in which the prismatic crystal grains have an average grain size of 0.3 .mu.m or less in minor axis and an average grain size of 5 .mu.m or less in major axis, the equi-axed crystal grains have an average grain size of 0.5 .mu.m or less and the dispersed particles have an average size of 0.1 .mu.m or less, the volume of the dispersed particles being 0.05% by volume or more based on the total volume of the rest of the sintered body. The silicon nitride sintered bodies have a strength sufficient for use as structural materials of machine parts or members, with a minimized scattering of the strength as well as high reliability, superior productivity and advantageous production cost.Type: GrantFiled: October 18, 1993Date of Patent: June 13, 1995Assignee: Sumitomo Electric Industries, Ltd.Inventors: Masashi Yoshimura, Takehisa Yamamoto, Shinichi Yamagata, Jin-Joo Matsui, Akira Yamakawa