Patents by Inventor Shin Ikeda

Shin Ikeda has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200348255
    Abstract: A reagent layer of a sensor contains as a mediator a quinone compound having a hydrophilic functional group, phenanthrenequinone, and/or a phenanthrenequinone derivative. The quinone compound has a lower redox potential than a conventional mediator, so interfering substances have less effect on detection results with this sensor.
    Type: Application
    Filed: July 23, 2020
    Publication date: November 5, 2020
    Inventors: Yoshifumi TAKAHARA, Takahiro NAKAMINAMI, Shin IKEDA
  • Patent number: 10766072
    Abstract: Provided is a method for producing high density nickel powder particularly having a median diameter of 100 to 160 ?m by controlling a particle size of nickel powder. The method includes: performing an initial operation by charging a pressure vessel equipped with a stirrer with a nickel ammine complex solution containing nickel in the concentration of 5 to 75 g/L together with seed crystals in the amount of 5 to 200 g per liter of the solution, increasing the temperature of the solution, and performing a reduction reaction with hydrogen by blowing hydrogen gas into the pressure vessel, thereby obtaining the nickel contained in the nickel ammine complex solution as nickel powder; and thereafter, performing a specified operation A repeatedly at least once to obtain the nickel powder having the median diameter of 100 to 160 ?m and a bulk density of 1 to 4.5 g/cm3.
    Type: Grant
    Filed: October 25, 2016
    Date of Patent: September 8, 2020
    Assignee: SUMITOMO METAL MINING CO., LTD.
    Inventors: Hideki Ohara, Yoshitomo Ozaki, Shin-ichi Heguri, Kazuyuki Takaishi, Osamu Ikeda, Tomoaki Yoneyama, Yohei Kudo
  • Patent number: 10761044
    Abstract: A reagent layer of a sensor contains as a mediator a quinone compound having a hydrophilic functional group, phenanthrenequinone, and/or a phenanthrenequinone derivative. The quinone compound has a lower redox potential than a conventional mediator, so interfering substances have less effect on detection results with this sensor.
    Type: Grant
    Filed: November 10, 2015
    Date of Patent: September 1, 2020
    Assignee: PHC HOLDINGS CORPORATION
    Inventors: Yoshifumi Takahara, Takahiro Nakaminami, Shin Ikeda
  • Publication number: 20200164887
    Abstract: A seat determining apparatus includes a travel route determining unit configured to determine a travel route of a vehicle such that the travel route runs by way of a scheduled boarding point and scheduled alighting point of each of a plurality of users scheduled to ride the vehicle, the scheduled boarding point being a point at which the user is scheduled to get on the vehicle, the scheduled alighting point being a point at which the user is scheduled to get off the vehicle; a boarding and alighting order determining unit configured to determine alighting order, in which the users get off the vehicle, based on the travel route and the scheduled alighting point of each of the users; and a seat determining unit configured to determine a seat according to the alighting order for each of the users when each of the users rides the vehicle.
    Type: Application
    Filed: September 5, 2019
    Publication date: May 28, 2020
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Keiji YAMASHITA, Koichi IKEDA, Koji TAGUCHI, Shin SAKURADA, Tomoyuki KURIYAMA
  • Patent number: 10549351
    Abstract: A method for producing nickel powder sequentially includes: a mixing step of adding, to a nickel ammine sulfate complex solution, an insoluble solid as seed crystals and a polyacrylate or lignosulfonate as a dispersant to form a mixed slurry; and a reduction and precipitation step of charging a reaction vessel with the mixed slurry and blowing hydrogen gas into the mixed slurry in the reaction vessel to reduce nickel complex ions in the mixed slurry to form nickel precipitate on the surface of the insoluble solid, wherein the amount of the dispersant added in the mixing step is controlled to control the number of the nickel powder obtained by formation of the nickel precipitate in the reduction and precipitation step.
    Type: Grant
    Filed: March 26, 2015
    Date of Patent: February 4, 2020
    Assignee: Sumitomo Metal Mining Co., Ltd.
    Inventors: Shin-ichi Heguri, Yoshitomo Ozaki, Kazuyuki Takaishi, Tomoaki Yoneyama, Hideki Ohara, Osamu Ikeda, Yohei Kudo
  • Patent number: 10500644
    Abstract: Provided a production method for reducing the content level of sulfur and carbon which are impurities in nickel powder to improve the quality of nickel powder produced by a complexing reduction method. The method of producing nickel powder having low carbon and sulfur concentrations includes: a complexing treatment of adding a complexing agent to a nickel sulfate aqueous solution to form a solution containing nickel complex ions; maintaining the solution containing nickel complex ions at a solution temperature of 150 to 250° C. in a pressure vessel and blowing hydrogen gas into the solution containing nickel complex ions to perform hydrogen reduction to produce nickel powder; washing the nickel powder with water; and then roasting the nickel powder washed with water in a mixed gas atmosphere of nitrogen and hydrogen.
    Type: Grant
    Filed: April 13, 2015
    Date of Patent: December 10, 2019
    Assignee: Sumitomo Metal Mining Co., Ltd.
    Inventors: Yoshitomo Ozaki, Shin-ichi Heguri, Kazuyuki Takaishi, Osamu Ikeda, Hideki Ohara, Tomoaki Yoneyama, Yohei Kudo
  • Patent number: 10471514
    Abstract: Provided is an efficient method for producing nickel powder from a solution containing a nickel ammine complex, the method including adding seed crystals to a solution containing a nickel ammine complex and subjecting the resulting mixture to hydrogen reduction under high temperatures and high pressures to produce nickel powder, which makes it possible to maintain the quality of the nickel powder produced and reduce the amount of the seed crystals used. The method for producing nickel powder is characterized by adding seed crystals and a dispersant having an anionic functional group to the solution containing a nickel ammine complex to form a mixture slurry, and subjecting the mixture slurry to pressurized hydrogen reduction treatment by blowing hydrogen into the mixture slurry in a high temperature and high pressure atmosphere to cause a reduction reaction, thereby reducing the nickel ammine complex in the mixture slurry to obtain nickel powder.
    Type: Grant
    Filed: February 9, 2015
    Date of Patent: November 12, 2019
    Assignees: KOCHI UNIVERSITY, NATIONAL UNIVERSITY CORPORATION, Sumitomo Metal Mining Co., Ltd.
    Inventors: Kazumichi Yanagisawa, Junhao Zhang, Osamu Ikeda, Hideki Ohara, Tomoaki Yoneyama, Yohei Kudo, Shin-ichi Heguri
  • Patent number: 10434577
    Abstract: Provided is nickel powder obtained by adding seed crystals to a nickel ammine complex solution and performing hydrogen reduction reaction under high temperatures and high pressures, wherein the nickel powder does not produce dust during handling, and a container can be efficiently filled with the nickel powder. The method for producing nickel powder includes: adding seed crystals and a surfactant having a nonionic or anionic functional group to a solution containing a nickel ammine complex to forma mixed slurry; and subjecting the mixed slurry to hydrogen reduction under high temperature and high pressure conditions in a pressure vessel to obtain nickel powder from the mixed slurry.
    Type: Grant
    Filed: March 24, 2015
    Date of Patent: October 8, 2019
    Assignees: KOCHI UNIVERSITY, NATIONAL UNIVERSITY CORPORATION, SUMITOMO METAL MINING CO., LTD.
    Inventors: Kazumichi Yanagisawa, Junhao Zhang, Kazuyuki Takaishi, Tomoaki Yoneyama, Shin-ichi Heguri, Hideki Ohara, Osamu Ikeda, Yohei Kudo, Yoshitomo Ozaki
  • Patent number: 10369468
    Abstract: An information processing apparatus includes an acquisition block configured to acquire attitude information indicative of an attitude of a head-mounted display worn on a head of a user, a visual-line direction definition block configured to define a visual-line direction in accordance with the attitude information of the head-mounted display, a first image generation block configured to generate a game image of a virtual three-dimensional space that is displayed on the head-mounted display, an acceptance block configured to accept a switching manipulation from the user while the head-mounted display displays the game image, and a second image generation block configured to generate a system menu image that is displayed on the head-mounted display instead of the game image generated by the first image generation block when the acceptance block accepts the switching manipulation.
    Type: Grant
    Filed: November 7, 2017
    Date of Patent: August 6, 2019
    Assignee: SONY INTERACTIVE ENTERTAINMENT INC.
    Inventors: Takakazu Ikeda, Shin Watanabe
  • Publication number: 20180217081
    Abstract: Voltage is applied across a counter electrode and a working electrode, with which a blood sample is in contact, in such a state that an oxidant in a redox substance is not substantially in contact with a working electrode but is in contact with a counter electrode and a reductant is not substantially in contact with the counter electrode but is in contact with the working electrode, whereby the reductant and the oxidant are respectively oxidized and reduced to measure current produced upon the oxidation and reduction. According to the above constitution, while lowering the voltage applied across the working electrode and the counter electrode, the Hct value of the blood sample can be measured stably with a satisfactory detection sensitivity. This measurement can be carried out with a sensor chip comprising a working electrode (11), a counter electrode (12), and a blood sample holding part (14) having branch parts (18a, 18b).
    Type: Application
    Filed: March 26, 2018
    Publication date: August 2, 2018
    Inventors: Masaki FUJIWARA, Shin IKEDA, Takahiro NAKAMINAMI
  • Publication number: 20180128769
    Abstract: The present invention provides a method of measuring a component in blood, by which an amount of the component can be corrected accurately by measuring a hematocrit (Hct) value of the blood with high accuracy and high reliability and also provides a sensor used in the method. The method of measuring a component in blood using a biosensor comprising a first electrode system including a first working electrode on which at least an oxidoreductase that acts upon the component and a mediator are provided and a first counter electrode and a second working electrode on which the mediator is not provided. The first working electrode and the first counter electrode are used for obtaining the amount of the component and the second working electrode and the first working electrode are used for obtaining the amount of the blood cells.
    Type: Application
    Filed: January 2, 2018
    Publication date: May 10, 2018
    Inventors: Masaki FUJIWARA, Teppei SHINNO, Shin IKEDA
  • Publication number: 20180120249
    Abstract: The present invention provides a method of measuring a component in blood, by which the amounts of blood cells and an interfering substance can be measured with high accuracy and high reliability and the amount of the component can be corrected accurately based on the amounts of the blood cells and the interfering substance. In a sensor for measuring a blood component, a first working electrode 13 measures a current that flows during a redox reaction of a blood component, a second working electrode 17 measures the amount of blood cells, and a third working electrode 12 measures the amount of an interfering substance. Next, based on the measurement results, the amount of the blood component to be measured is corrected. Thus, more accurate and precise measurement of the amount of the blood component can be realized.
    Type: Application
    Filed: December 27, 2017
    Publication date: May 3, 2018
    Inventors: Masaki FUJIWARA, Teppei SHINNO, Shin IKEDA
  • Patent number: 9958411
    Abstract: Provided is a sensor chip for electrochemically measuring a concentration of an analyte in a blood sample. In one embodiment of the sensor, the sensor chip includes a substrate, and a preliminary measurement analyzer and a hematocrit value analyzer disposed on the substrate. The preliminary measurement analyzer includes a preliminary working electrode and a preliminary counter electrode. The hematocrit value analyzer includes a working electrode and a counter electrode. An oxidant of a redox substance is disposed on the preliminary measurement analyzer and the counter electrode. A reductant of a redox substance is disposed on the working electrode.
    Type: Grant
    Filed: December 9, 2015
    Date of Patent: May 1, 2018
    Assignee: Panasonic Healthcare Holdings Co., Ltd.
    Inventors: Masaki Fujiwara, Shin Ikeda, Takahiro Nakaminami
  • Publication number: 20170292929
    Abstract: The present invention provides a method of measuring a component in blood, by which an amount of the component can be corrected accurately by measuring a hematocrit (Hct) value of the blood with high accuracy and high reliability and also provides a sensor used in the method. The method of measuring a component in blood using a biosensor comprising a first electrode system including a first working electrode on which at least an oxidoreductase that acts upon the component and a mediator are provided and a first counter electrode and a second working electrode on which the mediator is not provided. The first working electrode and the first counter electrode are used for obtaining the amount of the component and the second working electrode and the first working electrode are used for obtaining the amount of the blood cells.
    Type: Application
    Filed: June 27, 2017
    Publication date: October 12, 2017
    Inventors: Masaki FUJIWARA, Teppei SHINNO, Shin IKEDA
  • Patent number: 9719956
    Abstract: The present invention provides a method of measuring a component in blood, by which an amount of the component can be corrected accurately by measuring a hematocrit (Hct) value of the blood with high accuracy and high reliability and also provides a sensor used in the method. The method of measuring a component in blood using a biosensor comprising a first electrode system including a first working electrode on which at least an oxidoreductase that acts upon the component and a mediator are provided and a first counter electrode and a second working electrode on which the mediator is not provided. The first working electrode and the first counter electrode are used for obtaining the amount of the component and the second working electrode and the first working electrode are used for obtaining the amount of the blood cells.
    Type: Grant
    Filed: November 12, 2015
    Date of Patent: August 1, 2017
    Assignee: Panasonic Healthcare Holdings Co., Ltd.
    Inventors: Masaki Fujiwara, Teppei Shinno, Shin Ikeda
  • Publication number: 20160178557
    Abstract: The present invention provides a method of measuring a component in blood, by which the amounts of blood cells and an interfering substance can be measured with high accuracy and high reliability and the amount of the component can be corrected accurately based on the amounts of the blood cells and the interfering substance. In a sensor for measuring a blood component, a first working electrode 13 measures a current that flows during a redox reaction of a blood component, a second working electrode 17 measures the amount of blood cells, and a third working electrode 12 measures the amount of an interfering substance. Next, based on the measurement results, the amount of the blood component to be measured is corrected. Thus, more accurate and precise measurement of the amount of the blood component can be realized.
    Type: Application
    Filed: February 3, 2016
    Publication date: June 23, 2016
    Inventors: Masaki FUJIWARA, Teppei SHINNO, Shin IKEDA
  • Publication number: 20160091453
    Abstract: Provided is a sensor chip for electrochemically measuring a concentration of an analyte in a blood sample. In one embodiment of the sensor, the sensor chip includes a substrate, and a preliminary measurement analyzer and a hematocrit value analyzer disposed on the substrate. The preliminary measurement analyzer includes a preliminary working electrode and a preliminary counter electrode. The hematocrit value analyzer includes a working electrode and a counter electrode. An oxidant of a redox substance is disposed on the preliminary measurement analyzer and the counter electrode. A reductant of a redox substance is disposed on the working electrode.
    Type: Application
    Filed: December 9, 2015
    Publication date: March 31, 2016
    Inventors: Masaki FUJIWARA, Shin IKEDA, Takahiro NAKAMINAMI
  • Publication number: 20160077040
    Abstract: The present invention provides a method of measuring a component in blood, by which an amount of the component can be corrected accurately by measuring a hematocrit (Hct) value of the blood with high accuracy and high reliability and also provides a sensor used in the method. The method of measuring a component in blood using a biosensor comprising a first electrode system including a first working electrode on which at least an oxidoreductase that acts upon the component and a mediator are provided and a first counter electrode and a second working electrode on which the mediator is not provided. The first working electrode and the first counter electrode are used for obtaining the amount of the component and the second working electrode and the first working electrode are used for obtaining the amount of the blood cells.
    Type: Application
    Filed: November 12, 2015
    Publication date: March 17, 2016
    Inventors: Masaki FUJIWARA, Teppei SHINNO, Shin IKEDA
  • Patent number: 9285335
    Abstract: The present invention provides a method of measuring a component in blood, by which the amounts of blood cells and an interfering substance can be measured with high accuracy and high reliability and the amount of the component can be corrected accurately based on the amounts of the blood cells and the interfering substance. In a sensor for measuring a blood component, a first working electrode 13 measures a current that flows during a redox reaction of a blood component, a second working electrode 17 measures the amount of blood cells, and a third working electrode 12 measures the amount of an interfering substance. Next, based on the measurement results, the amount of the blood component to be measured is corrected. Thus, more accurate and precise measurement of the amount of the blood component can be realized.
    Type: Grant
    Filed: August 1, 2013
    Date of Patent: March 15, 2016
    Assignee: Panasonic Healthcare Holdings Co., Ltd.
    Inventors: Masaki Fujiwara, Teppei Shinno, Shin Ikeda
  • Publication number: 20160061764
    Abstract: A reagent layer of a sensor contains as a mediator a quinone compound having a hydrophilic functional group, phenanthrenequinone, and/or a phenanthrenequinone derivative. The quinone compound has a lower redox potential than a conventional mediator, so interfering substances have less effect on detection results with this sensor.
    Type: Application
    Filed: November 10, 2015
    Publication date: March 3, 2016
    Inventors: Yoshifumi TAKAHARA, Takahiro NAKAMINAMI, Shin IKEDA