Patents by Inventor Shin Masuda

Shin Masuda has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11829048
    Abstract: A laser beam output apparatus includes a pulsed laser output section, an optical path determining section, a wavelength changing section, and a multiplexer. The pulsed laser output section outputs a laser beam having a predetermined wavelength as first pulses. The optical path determining section receives the first pulses and determines one among a plurality of optical paths for each of the first pulses for output. The wavelength changing section receives light beams traveling, respectively, through the plurality of optical paths and changes the light beams to have their respective different wavelengths for output. The multiplexer multiplexes outputs from the wavelength changing section.
    Type: Grant
    Filed: February 18, 2020
    Date of Patent: November 28, 2023
    Assignee: ADVANTEST CORPORATION
    Inventors: Takao Sakurai, Shin Masuda, Tomoki Joichi, Masao Fujino
  • Patent number: 11789055
    Abstract: A test apparatus inspects an antenna element or a device including the antenna element as a DUT by OTA. A front-end unit includes a plurality of electric field detection elements provided to face a plurality of points on a radiation surface of the antenna element of the DUT. The plurality of electric field detection elements can simultaneously detect the electric fields formed at the corresponding points by the DUT, respectively. A tester body receives a plurality of detection signals from the front-end unit and evaluates the DUT.
    Type: Grant
    Filed: March 23, 2022
    Date of Patent: October 17, 2023
    Assignee: ADVANTEST CORPORATION
    Inventors: Koji Asami, Shin Masuda
  • Patent number: 11635374
    Abstract: An optical testing device for use in testing an optical measuring instrument provides incident light from a light source to an incident object and receives reflected light due to reflection of the incident light at the incident object. The optical testing device includes an incident light receiving section that receives incident light, and a light signal providing section. The light signal providing section provides a light signal to the incident object after a predetermined delay time since the incident light receiving section has received the incident light. A reflected light signal due to reflection of the light signal at the incident object is provided to the optical measuring instrument. The delay time is approximately equal to the time between emission of the incident light from the light source and reception of the reflected light by the optical measuring instrument in the case of actually using the optical measuring instrument.
    Type: Grant
    Filed: April 1, 2020
    Date of Patent: April 25, 2023
    Assignee: ADVANTEST CORPORATION
    Inventors: Toshihiro Sugawara, Shin Masuda, Takao Sakurai, Hidenobu Matsumura, Takao Seki
  • Patent number: 11500230
    Abstract: According to the present invention, an optical device includes: a first electro-optical member and a second electro-optical member. The first electro-optical member has two convex portions spaced from each other by a recessed portion and a connecting portion arranged under the recessed portion to connect the two convex portions, the first electro-optical member exhibiting an electro-optical effect. The second electro-optical member has a recessed portion member arranged within the recessed portion, the second electro-optical member exhibiting an electro-optical effect. The permittivity of the first electro-optical member is higher than the permittivity of the second electro-optical member. The refractive index of the first electro-optical member is higher than the refractive index of the second electro-optical member. During application of an electric field, light to be transmitted is applied to the recessed portion member.
    Type: Grant
    Filed: August 30, 2018
    Date of Patent: November 15, 2022
    Assignee: ADVANTEST CORPORATION
    Inventors: Hideo Hara, Shunsuke Abe, Shin Masuda
  • Publication number: 20220326290
    Abstract: A test apparatus inspects an antenna element or a device including the antenna element as a DUT by OTA. A front-end unit includes a plurality of electric field detection elements provided to face a plurality of points on a radiation surface of the antenna element of the DUT. The plurality of electric field detection elements can simultaneously detect the electric fields formed at the corresponding points by the DUT, respectively. A tester body receives a plurality of detection signals from the front-end unit and evaluates the DUT.
    Type: Application
    Filed: March 23, 2022
    Publication date: October 13, 2022
    Inventors: Koji ASAMI, Shin MASUDA
  • Publication number: 20210294132
    Abstract: According to the present invention, an optical device includes: a first electro-optical member and a second electro-optical member. The first electro-optical member has two convex portions spaced from each other by a recessed portion and a connecting portion arranged under the recessed portion to connect the two convex portions, the first electro-optical member exhibiting an electro-optical effect. The second electro-optical member has a recessed portion member arranged within the recessed portion, the second electro-optical member exhibiting an electro-optical effect. The permittivity of the first electro-optical member is higher than the permittivity of the second electro-optical member. The refractive index of the first electro-optical member is higher than the refractive index of the second electro-optical member. During application of an electric field, light to be transmitted is applied to the recessed portion member.
    Type: Application
    Filed: August 30, 2018
    Publication date: September 23, 2021
    Applicant: ADVANTEST Corporation
    Inventors: Hideo HARA, Shunsuke ABE, Shin MASUDA
  • Publication number: 20200355608
    Abstract: An optical testing device for use in testing an optical measuring instrument provides incident light from a light source to an incident object and receives reflected light due to reflection of the incident light at the incident object. The optical testing device includes an incident light receiving section that receives incident light, and a light signal providing section. The light signal providing section provides a light signal to the incident object after a predetermined delay time since the incident light receiving section has received the incident light. A reflected light signal due to reflection of the light signal at the incident object is provided to the optical measuring instrument. The delay time is approximately equal to the time between emission of the incident light from the light source and reception of the reflected light by the optical measuring instrument in the case of actually using the optical measuring instrument.
    Type: Application
    Filed: April 1, 2020
    Publication date: November 12, 2020
    Applicant: ADVANTEST CORPORATION
    Inventors: Toshihiro SUGAWARA, Shin MASUDA, Takao SAKURAI, Hidenobu MATSUMURA, Takao SEKI
  • Publication number: 20200310220
    Abstract: A laser beam output apparatus includes a pulsed laser output section, an optical path determining section, a wavelength changing section, and a multiplexer. The pulsed laser output section outputs a laser beam having a predetermined wavelength as first pulses. The optical path determining section receives the first pulses and determines one among a plurality of optical paths for each of the first pulses for output. The wavelength changing section receives light beams traveling, respectively, through the plurality of optical paths and changes the light beams to have their respective different wavelengths for output. The multiplexer multiplexes outputs from the wavelength changing section.
    Type: Application
    Filed: February 18, 2020
    Publication date: October 1, 2020
    Applicant: ADVANTEST Corporation
    Inventors: Takao SAKURAI, Shin MASUDA, Tomoki JOICHI, Masao FUJINO
  • Patent number: 9791512
    Abstract: Provided is a test apparatus including an optical test signal generating section that generates an optical test signal; an optical signal supplying section that supplies the optical test signal to a device under test that is a testing target among a plurality of the devices under test; a first optical switch section that selects, from among optical signals output by the plurality of devices under test, the optical signal output by the device under test that is the testing target; and an optical signal receiving section that receives the selected optical signal.
    Type: Grant
    Filed: February 27, 2015
    Date of Patent: October 17, 2017
    Assignee: ADVANTEST CORPORATION
    Inventors: Shin Masuda, Hideo Hara, Tsuyoshi Ataka
  • Patent number: 9246579
    Abstract: A test apparatus that easily tests a device under test having an optical interface. Provided is a test method, a test apparatus, and a device interface apparatus on which is mounted a device under test having an optical interface, the device interface apparatus comprising a device mounting section on which the device under test is mounted; an optical connector that is connected to the optical interface of the device under test; and an optical signal detecting section that detects an optical signal output from at least one of the optical interface and the optical connector, before the optical interface of the device under test mounted on the device mounting section is connected to the optical connector.
    Type: Grant
    Filed: July 11, 2014
    Date of Patent: January 26, 2016
    Assignee: ADVANTEST CORPORATION
    Inventors: Hideo Hara, Shin Masuda
  • Publication number: 20150253388
    Abstract: Provided is a test apparatus including an optical test signal generating section that generates an optical test signal; an optical signal supplying section that supplies the optical test signal to a device under test that is a testing target among a plurality of the devices under test; a first optical switch section that selects, from among optical signals output by the plurality of devices under test, the optical signal output by the device under test that is the testing target; and an optical signal receiving section that receives the selected optical signal.
    Type: Application
    Filed: February 27, 2015
    Publication date: September 10, 2015
    Inventors: Shin MASUDA, Hideo HARA, Tsuyoshi ATAKA
  • Publication number: 20150016817
    Abstract: A test apparatus that easily tests a device under test having an optical interface. Provided is a test method, a test apparatus, and a device interface apparatus on which is mounted a device under test having an optical interface, the device interface apparatus comprising a device mounting section on which the device under test is mounted; an optical connector that is connected to the optical interface of the device under test; and an optical signal detecting section that detects an optical signal output from at least one of the optical interface and the optical connector, before the optical interface of the device under test mounted on the device mounting section is connected to the optical connector.
    Type: Application
    Filed: July 11, 2014
    Publication date: January 15, 2015
    Inventors: Hideo HARA, Shin MASUDA
  • Patent number: 8907696
    Abstract: There is provided a test apparatus for testing a device under test, including a test signal generator that generates a test signal to test the device under test, an electric-photo converter that converts the test signal into an optical test signal, an optical interface that (i) transmits the optical test signal generated by the electric-photo converter to an optical receiver of the device under test and (ii) receives and outputs an optical response signal output from the device under test, a photo-electric converter that converts the optical response signal output from the optical interface into an electrical response signal and transmits the electrical response signal, and a signal receiver that receives the response signal transmitted from the photo-electric converter and a test method.
    Type: Grant
    Filed: March 1, 2011
    Date of Patent: December 9, 2014
    Assignee: Advantest Corporation
    Inventor: Shin Masuda
  • Patent number: 8885157
    Abstract: Provided is a test apparatus that tests a device under test including an optical coupler transmitting optical signals in a direction perpendicular to a device surface. The test apparatus includes a substrate on which the device under test is to be loaded, an optical transmission path that transmits the optical signals, and a lens section facing the optical coupler on the substrate that focuses the optical signals from an end of either the optical coupler or the optical transmission path to an end of the other.
    Type: Grant
    Filed: March 4, 2011
    Date of Patent: November 11, 2014
    Assignee: Advantest Corporation
    Inventor: Shin Masuda
  • Patent number: 8792792
    Abstract: [PROBLEM] Providing an optical source that outputs optical frequency modulated light having a constant output optical intensity. [MEANS FOR SOLVING THE PROBLEM] Provided is a light source apparatus that outputs an optical signal having an optical frequency corresponding to a frequency control signal, the light source apparatus including a laser light source section that outputs laser light having an optical frequency corresponding to the frequency control signal; and an optical intensity adjusting section that compensates for intensity change of the laser light to output laser light in which the intensity change caused by a change in the optical frequency is restricted.
    Type: Grant
    Filed: October 18, 2011
    Date of Patent: July 29, 2014
    Assignee: Advantest Corporation
    Inventors: Shin Masuda, Kazunori Shiota
  • Patent number: 8712252
    Abstract: To efficiently apply jitter to an optical signal using a simple configuration, provided is an optical signal output apparatus that outputs an optical pulse pattern signal including jitter, the optical signal generating apparatus comprising a light source section that outputs an optical signal having an optical frequency corresponding to a frequency control signal; an optical modulation section that modulates the optical signal output by the light source section, according to a designated pulse pattern; and an optical jitter generating section that delays an optical signal passed by the optical modulation section according to the optical frequency, to apply jitter to the optical signal.
    Type: Grant
    Filed: October 18, 2011
    Date of Patent: April 29, 2014
    Assignee: Advantest Corporation
    Inventors: Shin Masuda, Kazunori Shiota
  • Patent number: 8699018
    Abstract: It is an object of the present invention to test a device under test including an optical interface. Provided is a device interface apparatus on which is loaded a device under test including an optical interface. The device interface apparatus comprises a device loading section on which the device under test is loaded; an optical connector that is to be connected to the optical interface of the device under test; and an optical connector moving section that moves the optical connector toward the optical interface of the device under test loaded on the device loading section, to optically connect the optical connector and the optical interface.
    Type: Grant
    Filed: August 2, 2011
    Date of Patent: April 15, 2014
    Assignee: Advantest Corporation
    Inventors: Hideo Hara, Shin Masuda
  • Patent number: 8659750
    Abstract: Provided is a test apparatus that tests a device under test including an optical coupler for transmitting optical signals in a surface direction and a first groove for holding an optical transmission path connected to the optical coupler. The test apparatus comprises a substrate on which the device under test is to be loaded; an optical transmission path to be connected to the optical coupler; and a pressing section that presses the optical transmission path from the substrate side toward the first groove. Also provided is a test method.
    Type: Grant
    Filed: March 3, 2011
    Date of Patent: February 25, 2014
    Assignee: Advantest Corporation
    Inventor: Shin Masuda
  • Patent number: 8559777
    Abstract: Provided is an optical modulator that modulates input light with a high frequency and low half-wave voltage. An optical device comprises a substrate; a dielectric film that is formed on the substrate and includes a first optical waveguide and a second optical waveguide that run parallel to each other; an insulating film formed on the dielectric film; a coplanar line that is formed on the insulating film and includes a signal line arranged between the first optical waveguide and the second optical waveguide, a first ground line arranged in a first region, and a second ground line arranged in a second region; and auxiliary electrodes that are arranged in the first region and the second region, are formed in contact with the dielectric film or within the insulating film, and apply bias voltages to the first optical waveguide and the second optical waveguide.
    Type: Grant
    Filed: October 20, 2011
    Date of Patent: October 15, 2013
    Assignee: Advantest Corporation
    Inventors: Hideo Hara, Shin Masuda, Atsushi Seki
  • Publication number: 20120328227
    Abstract: Provided is an optical modulator that modulates input light with a high frequency and low half-wave voltage. An optical device comprises a substrate; a dielectric film that is formed on the substrate and includes a first optical waveguide and a second optical waveguide that run parallel to each other; an insulating film formed on the dielectric film; a coplanar line that is formed on the insulating film and includes a signal line arranged between the first optical waveguide and the second optical waveguide, a first ground line arranged in a first region, and a second ground line arranged in a second region; and auxiliary electrodes that are arranged in the first region and the second region, are formed in contact with the dielectric film or within the insulating film, and apply bias voltages to the first optical waveguide and the second optical waveguide.
    Type: Application
    Filed: October 20, 2011
    Publication date: December 27, 2012
    Applicant: ADVANTEST CORPORATION
    Inventors: Hideo HARA, Shin MASUDA, Atsushi SEKI