Patents by Inventor Shin Matsukuma

Shin Matsukuma has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11473211
    Abstract: A method of estimating an oxygen concentration in monocrystalline silicon, which is pulled up by a pull-up device having a hot zone with a plane-asymmetric arrangement with respect to a plane defined by a crystal pull-up shaft and an application direction of a horizontal magnetic field, includes, in at least one of a neck-formation step or a shoulder-formation step for the monocrystalline silicon: a step of measuring a surface temperature of a silicon melt at a point defining a plane-asymmetric arrangement of a hot zone, and a step of estimating the oxygen concentration in a straight body of the pulled-up monocrystalline silicon based on the measured surface temperature of the silicon melt and a predetermined relationship between the surface temperature of the silicon melt and the oxygen concentration in the monocrystalline silicon.
    Type: Grant
    Filed: February 27, 2019
    Date of Patent: October 18, 2022
    Assignee: SUMCO CORPORATION
    Inventors: Shin Matsukuma, Kazuyoshi Takahashi, Toshinori Seki, Tegi Kim, Ryusuke Yokoyama
  • Publication number: 20200407870
    Abstract: A method of estimating an oxygen concentration in monocrystalline silicon, which is pulled up by a pull-up device having a hot zone with a plane-asymmetric arrangement with respect to a plane defined by a crystal pull-up shaft and an application direction of a horizontal magnetic field, includes, in at least one of a neck-formation step or a shoulder-formation step for the monocrystalline silicon: a step of measuring a surface temperature of a silicon melt at a point defining a plane-asymmetric arrangement of a hot zone, and a step of estimating the oxygen concentration in a straight body of the pulled-up monocrystalline silicon based on the measured surface temperature of the silicon melt and a predetermined relationship between the surface temperature of the silicon melt and the oxygen concentration in the monocrystalline silicon.
    Type: Application
    Filed: February 27, 2019
    Publication date: December 31, 2020
    Applicant: SUMCO CORPORATION
    Inventors: Shin MATSUKUMA, Kazuyoshi TAKAHASHI, Toshinori SEKI, Tegi KIM, Ryusuke YOKOYAMA
  • Patent number: 8216371
    Abstract: A Czochralski single crystal manufacturing apparatus uses multiple heaters to improve the controllability of crystal diameter. The power supplied to the multiple heaters is controlled so as to bring the pulling up speed close to a predetermined speed set value, and so as to bring the heater temperatures close to predetermined target temperature values. The ratio of electrical power between the heaters is controlled to agree with a predetermined power ratio set value which varies according to the crystal pulling up length, and the heater temperatures change along with this change, which causes disturbance to the diameter control. To compensate for this, heater temperature changes along with the power ratio set value change are taken into account in advance in the temperature set values. Accordingly, along with change of the power ratio set value, the temperature set values change to values appropriate for the current power ratio set value.
    Type: Grant
    Filed: July 20, 2007
    Date of Patent: July 10, 2012
    Assignee: Sumco Techxiv Corporation
    Inventors: Tetsuhiro Iida, Shin Matsukuma
  • Publication number: 20090293800
    Abstract: A Czochralski single crystal manufacturing apparatus uses multiple heaters to improve the controllability of crystal diameter. The power supplied to the multiple heaters is controlled so as to bring the pulling up speed close to a predetermined speed set value, and so as to bring the heater temperatures close to predetermined target temperature values. The ratio of electrical power between the heaters is controlled to agree with a predetermined power ratio set value which varies according to the crystal pulling up length, and the heater temperatures change along with this change, which causes disturbance to the diameter control. To compensate for this, heater temperature changes along with the power ratio set value change are taken into account in advance in the temperature set values. Accordingly, along with change of the power ratio set value, the temperature set values change to values appropriate for the current power ratio set value.
    Type: Application
    Filed: July 20, 2007
    Publication date: December 3, 2009
    Applicant: SUMCO TECHXIV CORPORATION
    Inventors: Tetsuhiro Iida, Shin Matsukuma
  • Publication number: 20080302295
    Abstract: In the crystal growth rate (V), there is such a permissible range that the given quality of silicon single crystal can be maintained. This permissible range is determined in advance. The log data of crystal growth rate (V) is measured in the pulling up of silicon single crystal, and using the log data, the actual value of crystal growth rate (V) is determined. The actual value is compared with the permissible range. Any region of silicon single crystal corresponding to crystal growth rate (V) falling within the permissible range is judged as being a conforming region satisfying given standards, while any region of silicon single crystal corresponding to crystal growth rate (V) falling outside the permissible range is judged as being a defective region not satisfying given standards.
    Type: Application
    Filed: August 1, 2005
    Publication date: December 11, 2008
    Inventors: Toshirou Kotooka, Shin Matsukuma, Toshiaki Saishoji
  • Patent number: 6179910
    Abstract: This invention provides a method for manufacturing silicon single crystals. The method is capable of eliminating void defects existing in deep regions of a silicon single crystal despite the size of the silicon single crystal. The silicon single crystals according to this invention are pulled the radius of a ring-shaped oxidation induced stacking fault (OSF ring) of a wafer is larger than half the radius of the wafer during the process of thermal oxidation treatment.
    Type: Grant
    Filed: September 14, 1999
    Date of Patent: January 30, 2001
    Assignee: Komatsu Electronic Metals Co., LTD
    Inventors: Takashi Yokoyama, Shin Matsukuma, Toshiaki Saishoji, Kozo Nakamura, Junsuke Tomioka