Patents by Inventor Shin-Yeu Tsai

Shin-Yeu Tsai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240096884
    Abstract: A method of making a semiconductor device includes forming a first polysilicon structure over a first portion of a substrate. The method further includes forming a first spacer on a sidewall of the first polysilicon structure, wherein the first spacer has a concave corner region between an upper portion and a lower portion. The method further includes forming a protective layer covering an entirety of the first spacer and the first polysilicon structure, wherein the protective layer has a first thickness over the concave corner region and a second thickness over the first polysilicon structure, and a difference between the first thickness and the second thickness is at most 10% of the second thickness.
    Type: Application
    Filed: November 28, 2023
    Publication date: March 21, 2024
    Inventors: Yu-Shao CHENG, Chui-Ya PENG, Kung-Wei LEE, Shin-Yeu TSAI
  • Patent number: 11855086
    Abstract: A semiconductor device includes a substrate, a first polysilicon structure over a first portion of the substrate, and a first spacer on a sidewall of the first polysilicon structure. The first spacer has a concave corner region between an upper portion and a lower portion. The semiconductor device includes a second polysilicon structure over a second portion of the substrate. The semiconductor device includes a second spacer on a sidewall of the second polysilicon structure. The semiconductor device further includes a protective layer covering an entirety of the first spacer and the first polysilicon structure, wherein the protective layer has a first thickness over the concave corner region and a second thickness over the first polysilicon structure, a difference between the first thickness and the second thickness is at most 10% of the second thickness, and the protective layer exposes a top-most portion of a sidewall of the second spacer.
    Type: Grant
    Filed: March 18, 2021
    Date of Patent: December 26, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Yu-Shao Cheng, Chui-Ya Peng, Kung-Wei Lee, Shin-Yeu Tsai
  • Publication number: 20210296160
    Abstract: A method includes etching a semiconductor substrate to form trenches extending into the semiconductor substrate, and depositing a first dielectric layer into the trenches. The first dielectric layer fills lower portions of the trenches. A Ultra-Violet (UV) treatment is performed on the first dielectric layer in an oxygen-containing process gas. The method further includes depositing a second dielectric layer into the trenches. The second dielectric layer fills upper portions of the trenches. A thermal treatment is performed on the second dielectric layer in an additional oxygen-containing process gas. After the thermal treatment, an anneal is performed on the first dielectric layer and the second dielectric layer.
    Type: Application
    Filed: June 7, 2021
    Publication date: September 23, 2021
    Inventors: Tsung Han Hsu, Kuan-Cheng Wang, Han-Ti Hsiaw, Shin-Yeu Tsai
  • Publication number: 20210225840
    Abstract: A semiconductor device includes a substrate, a first polysilicon structure over a first portion of the substrate, and a first spacer on a sidewall of the first polysilicon structure. The first spacer has a concave corner region between an upper portion and a lower portion. The semiconductor device includes a second polysilicon structure over a second portion of the substrate. The semiconductor device includes a second spacer on a sidewall of the second polysilicon structure. The semiconductor device further includes a protective layer covering an entirety of the first spacer and the first polysilicon structure, wherein the protective layer has a first thickness over the concave corner region and a second thickness over the first polysilicon structure, a difference between the first thickness and the second thickness is at most 10% of the second thickness, and the protective layer exposes a top-most portion of a sidewall of the second spacer.
    Type: Application
    Filed: March 18, 2021
    Publication date: July 22, 2021
    Inventors: Yu-Shao CHENG, Chui-Ya PENG, Kung-Wei LEE, Shin-Yeu TSAI
  • Patent number: 11049945
    Abstract: Semiconductor device structures and methods for forming the same are provided. A semiconductor device structure includes a gate structure over a semiconductor substrate. The gate structure includes a gate electrode layer and a gate dielectric layer covering a bottom surface and sidewalls of the gate electrode layer. The semiconductor device structure also includes spacer elements in contact with sidewalls of the gate structure and protruding from a top surface of the gate electrode layer. The semiconductor device structure also includes a first protection layer over the gate electrode layer and between the spacer elements. The semiconductor device structure also includes a dielectric layer over the first protection layer and between the spacer elements. A portion of the dielectric layer is between sidewalls of the spacer elements and sidewalls of the first protection layer.
    Type: Grant
    Filed: April 29, 2019
    Date of Patent: June 29, 2021
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Shih-Wen Huang, Yun-Wen Chu, Hong-Hsien Ke, Chia-Hui Lin, Shin-Yeu Tsai, Shih-Chieh Chang
  • Patent number: 11031280
    Abstract: A method includes etching a semiconductor substrate to form trenches extending into the semiconductor substrate, and depositing a first dielectric layer into the trenches. The first dielectric layer fills lower portions of the trenches. A Ultra-Violet (UV) treatment is performed on the first dielectric layer in an oxygen-containing process gas. The method further includes depositing a second dielectric layer into the trenches. The second dielectric layer fills upper portions of the trenches. A thermal treatment is performed on the second dielectric layer in an additional oxygen-containing process gas. After the thermal treatment, an anneal is performed on the first dielectric layer and the second dielectric layer.
    Type: Grant
    Filed: April 4, 2018
    Date of Patent: June 8, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tsung Han Hsu, Kuan-Cheng Wang, Han-Ti Hsiaw, Shin-Yeu Tsai
  • Patent number: 10978341
    Abstract: A method includes performing an implantation on a portion of a first layer to form an implanted region, and removing un-implanted portions of the first layer. The implanted region remains after the un-implanted portions of the first layer are removed. An etching is then performed on a second layer underlying the first layer, wherein the implanted region is used as a portion of a first etching mask in the etching. The implanted region is removed. A metal mask is etched using the second layer to form a patterned mask. An inter-layer dielectric is then etched to form a contact opening, wherein the patterned mask is used as a second etching mask.
    Type: Grant
    Filed: December 5, 2019
    Date of Patent: April 13, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Hung Sun, Han-Ti Hsiaw, Yi-Wei Chiu, Kuan-Cheng Wang, Shin-Yeu Tsai, Jr-Yu Chen, Wen-Cheng Wu
  • Patent number: 10957697
    Abstract: A manufacture includes a substrate comprising a first portion and a second portion. The manufacture further includes a first polysilicon structure over the first portion of the substrate. The manufacture further includes a second polysilicon structure over the second portion of the substrate. The manufacture further includes two spacers on opposite sidewalls of the second polysilicon structure, wherein each spacer of the two spacers has a concave corner region between an upper portion and a lower portion. The manufacture further includes a protective layer covering the first portion of the substrate and the first polysilicon structure, the protective layer exposing the second portion of the substrate, the second polysilicon structure, and partially exposing the two spacers.
    Type: Grant
    Filed: August 13, 2018
    Date of Patent: March 23, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Yu-Shao Cheng, Shin-Yeu Tsai, Chui-Ya Peng, Kung-Wei Lee
  • Patent number: 10720430
    Abstract: A method includes etching a semiconductor substrate to form trenches, with a portion of the semiconductor substrate between the trenches being a semiconductor strip, and depositing a dielectric dose film on sidewalls of the semiconductor strip. The dielectric dose film is doped with a dopant of n-type or p-type. The remaining portions of the trenches are filled with a dielectric material. A planarization is performed on the dielectric material. Remaining portions of the dielectric dose film and the dielectric material form Shallow Trench Isolation (STI) regions. A thermal treatment is performed to diffuse the dopant in the dielectric dose film into the semiconductor strip.
    Type: Grant
    Filed: December 26, 2019
    Date of Patent: July 21, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shih-Wen Huang, Chia-Hui Lin, Shin-Yeu Tsai, Kai Hung Cheng
  • Publication number: 20200144258
    Abstract: A method includes etching a semiconductor substrate to form trenches, with a portion of the semiconductor substrate between the trenches being a semiconductor strip, and depositing a dielectric dose film on sidewalls of the semiconductor strip. The dielectric dose film is doped with a dopant of n-type or p-type. The remaining portions of the trenches are filled with a dielectric material. A planarization is performed on the dielectric material. Remaining portions of the dielectric dose film and the dielectric material form Shallow Trench Isolation (STI) regions. A thermal treatment is performed to diffuse the dopant in the dielectric dose film into the semiconductor strip.
    Type: Application
    Filed: December 26, 2019
    Publication date: May 7, 2020
    Inventors: Shih-Wen Huang, Chia-Hui Lin, Shin-Yeu Tsai, Kai Hung Cheng
  • Publication number: 20200111705
    Abstract: A method includes performing an implantation on a portion of a first layer to form an implanted region, and removing un-implanted portions of the first layer. The implanted region remains after the un-implanted portions of the first layer are removed. An etching is then performed on a second layer underlying the first layer, wherein the implanted region is used as a portion of a first etching mask in the etching. The implanted region is removed. A metal mask is etched using the second layer to form a patterned mask. An inter-layer dielectric is then etched to form a contact opening, wherein the patterned mask is used as a second etching mask.
    Type: Application
    Filed: December 5, 2019
    Publication date: April 9, 2020
    Inventors: Chih-Hung Sun, Han-Ti Hsiaw, Yi-Wei Chiu, Kuan-Cheng Wang, Shin-Yeu Tsai, Jr-Yu Chen, Wen-Cheng Wu
  • Patent number: 10522541
    Abstract: A method includes etching a semiconductor substrate to form trenches, with a portion of the semiconductor substrate between the trenches being a semiconductor strip, and depositing a dielectric dose film on sidewalls of the semiconductor strip. The dielectric dose film is doped with a dopant of n-type or p-type. The remaining portions of the trenches are filled with a dielectric material. A planarization is performed on the dielectric material. Remaining portions of the dielectric dose film and the dielectric material form Shallow Trench Isolation (STI) regions. A thermal treatment is performed to diffuse the dopant in the dielectric dose film into the semiconductor strip.
    Type: Grant
    Filed: April 22, 2019
    Date of Patent: December 31, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shih-Wen Huang, Chia-Hui Lin, Shin-Yeu Tsai, Kai Hung Cheng
  • Patent number: 10510593
    Abstract: A method includes performing an implantation on a portion of a first layer to form an implanted region, and removing un-implanted portions of the first layer. The implanted region remains after the un-implanted portions of the first layer are removed. An etching is then performed on a second layer underlying the first layer, wherein the implanted region is used as a portion of a first etching mask in the etching. The implanted region is removed. A metal mask is etched using the second layer to form a patterned mask. An inter-layer dielectric is then etched to form a contact opening, wherein the patterned mask is used as a second etching mask.
    Type: Grant
    Filed: January 12, 2018
    Date of Patent: December 17, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Hung Sun, Han-Ti Hsiaw, Yi-Wei Chiu, Kuan-Cheng Wang, Shin-Yeu Tsai, Jr-Yu Chen, Wen-Cheng Wu
  • Publication number: 20190259847
    Abstract: Semiconductor device structures and methods for forming the same are provided. A semiconductor device structure includes a gate structure over a semiconductor substrate. The gate structure includes a gate electrode layer and a gate dielectric layer covering a bottom surface and sidewalls of the gate electrode layer. The semiconductor device structure also includes spacer elements in contact with sidewalls of the gate structure and protruding from a top surface of the gate electrode layer. The semiconductor device structure also includes a first protection layer over the gate electrode layer and between the spacer elements. The semiconductor device structure also includes a dielectric layer over the first protection layer and between the spacer elements. A portion of the dielectric layer is between sidewalls of the spacer elements and sidewalls of the first protection layer.
    Type: Application
    Filed: April 29, 2019
    Publication date: August 22, 2019
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Shih-Wen HUANG, Yun-Wen CHU, Hong-Hsien KE, Chia-Hui LIN, Shin-Yeu TSAI, Shih-Chieh CHANG
  • Publication number: 20190252379
    Abstract: A method includes etching a semiconductor substrate to form trenches, with a portion of the semiconductor substrate between the trenches being a semiconductor strip, and depositing a dielectric dose film on sidewalls of the semiconductor strip. The dielectric dose film is doped with a dopant of n-type or p-type. The remaining portions of the trenches are filled with a dielectric material. A planarization is performed on the dielectric material. Remaining portions of the dielectric dose film and the dielectric material form Shallow Trench Isolation (STI) regions. A thermal treatment is performed to diffuse the dopant in the dielectric dose film into the semiconductor strip.
    Type: Application
    Filed: April 22, 2019
    Publication date: August 15, 2019
    Inventors: Shih-Wen Huang, Chia-Hui Lin, Shin-Yeu Tsai, Kai Hung Cheng
  • Patent number: 10276677
    Abstract: Semiconductor device structures and methods for forming the same are provided. A method for forming a semiconductor device structure includes forming a gate structure over a semiconductor substrate. The method also includes forming spacer elements adjoining sidewalls of the gate structure. The method further includes forming a protection material layer over the gate structure. The formation of the protection material layer includes a substantial non-plasma process. In addition, the method includes depositing a dielectric material layer over the protection material layer. The deposition of the dielectric material layer includes a plasma-involved process.
    Type: Grant
    Filed: April 21, 2017
    Date of Patent: April 30, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Shih-Wen Huang, Yun-Wen Chu, Hong-Hsien Ke, Chia-Hui Lin, Shin-Yeu Tsai, Shih-Chieh Chang
  • Patent number: 10269796
    Abstract: A method includes etching a semiconductor substrate to form trenches, with a portion of the semiconductor substrate between the trenches being a semiconductor strip, and depositing a dielectric dose film on sidewalls of the semiconductor strip. The dielectric dose film is doped with a dopant of n-type or p-type. The remaining portions of the trenches are filled with a dielectric material. A planarization is performed on the dielectric material. Remaining portions of the dielectric dose film and the dielectric material form Shallow Trench Isolation (STI) regions. A thermal treatment is performed to diffuse the dopant in the dielectric dose film into the semiconductor strip.
    Type: Grant
    Filed: January 10, 2018
    Date of Patent: April 23, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shih-Wen Huang, Chia-Hui Lin, Shin-Yeu Tsai, Kai Hung Cheng
  • Publication number: 20190006359
    Abstract: A manufacture includes a substrate comprising a first portion and a second portion. The manufacture further includes a first polysilicon structure over the first portion of the substrate. The manufacture further includes a second polysilicon structure over the second portion of the substrate. The manufacture further includes two spacers on opposite sidewalls of the second polysilicon structure, wherein each spacer of the two spacers has a concave corner region between an upper portion and a lower portion. The manufacture further includes a protective layer covering the first portion of the substrate and the first polysilicon structure, the protective layer exposing the second portion of the substrate, the second polysilicon structure, and partially exposing the two spacers.
    Type: Application
    Filed: August 13, 2018
    Publication date: January 3, 2019
    Inventors: Yu-Shao CHENG, Shin-Yeu TSAI, Chui-Ya PENG, Kung-Wei LEE
  • Patent number: 10050035
    Abstract: A method includes forming a first polysilicon structure over a first portion of a substrate. A second polysilicon structure is formed over a second portion of the substrate. Two spacers are formed on opposite sidewalls of the second polysilicon structure. A layer of protective material is formed to cover the first and second portions of the substrate. The layer of protective material has a first thickness over the second polysilicon structure and a second thickness over the two spacers. The first thickness is equal to or greater than 500 ?, and the second thickness is equal to or less than 110% of the first thickness. A patterned photo resist layer is formed to cover a first portion of the layer of protective material that covers the first portion of the substrate. The second portion of the layer of protective material is removed.
    Type: Grant
    Filed: January 17, 2014
    Date of Patent: August 14, 2018
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Yu-Shao Cheng, Shin-Yeu Tsai, Chui-Ya Peng, Kung-Wei Lee
  • Publication number: 20180226291
    Abstract: A method includes etching a semiconductor substrate to form trenches extending into the semiconductor substrate, and depositing a first dielectric layer into the trenches. The first dielectric layer fills lower portions of the trenches. A Ultra-Violet (UV) treatment is performed on the first dielectric layer in an oxygen-containing process gas. The method further includes depositing a second dielectric layer into the trenches. The second dielectric layer fills upper portions of the trenches. A thermal treatment is performed on the second dielectric layer in an additional oxygen-containing process gas. After the thermal treatment, an anneal is performed on the first dielectric layer and the second dielectric layer.
    Type: Application
    Filed: April 4, 2018
    Publication date: August 9, 2018
    Inventors: Tsung Han Hsu, Kuan-Cheng Wang, Han-Ti Hsiaw, Shin-Yeu Tsai