Patents by Inventor Shingo Furui

Shingo Furui has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10441234
    Abstract: An X-ray phase-contrast imaging device capable of easily performing imaging of an object using X-rays of plural energies is provided. The disclosed exemplary configuration includes an X-ray source of a dual energy output type, and an FPD having a high energy X-ray detection surface and a low energy X-ray detection surface so that two types of imaging, imaging by high energy X-ray and imaging by low energy X-ray, can be performed. By imaging so as to scan the object while changing the relative position of the imaging system and the object, two types of imaging can be completed at once.
    Type: Grant
    Filed: June 15, 2017
    Date of Patent: October 15, 2019
    Assignee: Shimadzu Corporation
    Inventors: Koichi Tanabe, Shingo Furui, Hiroyuki Kishihara, Kenji Kimura, Taro Shirai, Takahiro Doki, Satoshi Sano, Akira Horiba
  • Patent number: 10393890
    Abstract: In an X-ray imaging device according to a first embodiment, an X-ray detector has a configuration in which scintillator elements are defined by light-shielding walls in a lattice shape. Among X-rays incident on the X-ray detector, X-rays incident on the light-shielding walls are not converted into scintillator light and are transmitted by the X-ray detector. Accordingly, by causing X-rays to be incident on the X-ray detector in which the scintillator elements are defined by the light-shielding walls in a lattice shape, an area in which X-rays 3a transmitted by a subject M are incident on the X-ray detector can be limited to an arbitrary range. Accordingly, since a detection mask can be omitted in the X-ray imaging device which is used for EI-XPCi, it is possible to reduce a manufacturing cost of the X-ray imaging device.
    Type: Grant
    Filed: March 1, 2016
    Date of Patent: August 27, 2019
    Assignee: SHIMADZU CORPORATION
    Inventors: Koichi Tanabe, Shingo Furui, Toshinori Yoshimuta, Kenji Kimura, Akihiro Nishimura, Taro Shirai, Takahiro Doki, Satoshi Sano, Akira Horiba, Toshiyuki Sato
  • Patent number: 10365235
    Abstract: Provided is a radiation phase-contrast imaging device capable of assuredly detecting a self-image and precisely imaging the internal structure of an object. According to the configuration of the present invention, the longitudinal direction of a detection surface of a flat panel detector is inclined with respect to the extending direction of an absorber in a phase grating. This causes variations in the position (phase) of a projected stripe pattern of a self-image at different positions on the detection surface. This is therefore expected to produce the same effects as those obtainable when a plurality of self-images are obtained by performing imaging a plurality of times in such a manner that the position of the projected self-images on the detection surface varies. This alone, however, results in a single self-image phase for a specific region of the object.
    Type: Grant
    Filed: November 20, 2015
    Date of Patent: July 30, 2019
    Assignee: Shimadzu Corporation
    Inventors: Koichi Tanabe, Shingo Furui, Hiroyuki Kishihara, Kenji Kimura, Taro Shirai, Takahiro Doki, Satoshi Sano, Akira Horiba
  • Patent number: 10335109
    Abstract: Provided is a radiation phase difference imaging apparatus in which a separation distance between a phase grating and a radiation detector is optimized. The separation distance between the phase grating and a detection surface of an FPD is determined based on the magnitude of noise corruption in a self-image projected onto the detection surface. The magnitude of the effect of the noise is used as a basis for assessing the separation distance. It is determined whether a distance Zd is appropriate for imaging, based on the magnitude of noise corruption in the self-image in a self-image picture which is obtained when the distance Zd is the distance between the phase grating and the detection surface of the FPD. The separation distance can thus be optimized based on actual conditions of an actual X-ray source that emits a plurality of types of X-rays.
    Type: Grant
    Filed: March 6, 2015
    Date of Patent: July 2, 2019
    Assignee: Shimadzu Corporation
    Inventors: Satoshi Sano, Toshiyuki Sato, Koichi Tanabe, Shingo Furui, Toshinori Yoshimuta, Hiroyuki Kishihara, Takahiro Doki, Akira Horiba
  • Patent number: 10295678
    Abstract: A X-ray detector having enhanced X-ray sensitivity, which enables dual energy imaging having high diagnostic performance. This X-ray detector includes: scintillator elements which are partitioned by light blocking walls and which convert low-energy X-rays to light; and scintillator elements which are partitioned by light blocking walls and which convert high-energy X-rays to light. When seen from the direction of incidence of the X-rays, the positional pattern of the light blocking walls and that of the light blocking walls are configured so as not to be in alignment with each other. Accordingly, the X-rays incident on the X-ray detector are converted to light by at least either one of the scintillator elements and are finally outputted as X-ray detection signals.
    Type: Grant
    Filed: January 26, 2016
    Date of Patent: May 21, 2019
    Assignee: Shimadzu Corporation
    Inventors: Koichi Tanabe, Shingo Furui, Toshinori Yoshimuta, Kenji Kimura, Akihiro Nishimura, Taro Shirai, Takahiro Doki, Satoshi Sano, Akira Horiba, Toshiyuki Sato
  • Patent number: 10276276
    Abstract: A movable collimator is realized with a simple mechanism in a radiation phase-contrast image capturing device. A collimator is integrated with a multi-slit or a phase grating to provide a simpler device configuration. In some examples, the collimator and the multi-slit or phase grating may be configured to move while still providing image capturing.
    Type: Grant
    Filed: January 26, 2018
    Date of Patent: April 30, 2019
    Assignee: Shimadzu Corporation
    Inventors: Akira Horiba, Shingo Furui, Koichi Tanabe, Toshinori Yoshimuta, Kenji Kimura, Hiroyuki Kishihara, Takahiro Doki, Satoshi Sano
  • Publication number: 20180364182
    Abstract: An X-ray phase-contrast imaging device capable of easily performing imaging of an object using X-rays of plural energies is provided. The disclosed exemplary configuration includes an X-ray source of a dual energy output type, and an FPD having a high energy X-ray detection surface and a low energy X-ray detection surface so that two types of imaging, imaging by high energy X-ray and imaging by low energy X-ray, can be performed. By imaging so as to scan the object while changing the relative position of the imaging system and the object, two types of imaging can be completed at once.
    Type: Application
    Filed: June 15, 2017
    Publication date: December 20, 2018
    Inventors: Koichi TANABE, Shingo FURUI, Hiroyuki KISHIHARA, Kenji KIMURA, Taro SHIRAI, Takahiro DOKI, Satoshi SANO, Akira HORIBA
  • Publication number: 20180279972
    Abstract: In an X-ray imaging device according to a first embodiment, an X-ray detector has a configuration in which scintillator elements are defined by light-shielding walls in a lattice shape. Among X-rays incident on the X-ray detector, X-rays incident on the light-shielding walls are not converted into scintillator light and are transmitted by the X-ray detector. Accordingly, by causing X-rays to be incident on the X-ray detector in which the scintillator elements are defined by the light-shielding walls in a lattice shape, an area in which X-rays 3a transmitted by a subject M are incident on the X-ray detector can be limited to an arbitrary range. Accordingly, since a detection mask can be omitted in the X-ray imaging device which is used for EI-XPCi, it is possible to reduce a manufacturing cost of the X-ray imaging device.
    Type: Application
    Filed: March 1, 2016
    Publication date: October 4, 2018
    Applicant: SHIMADZU CORPORATION
    Inventors: Koichi TANABE, Shingo FURUI, Toshinori YOSHIMUTA, Kenji KIMURA, Akihiro NISHIMURA, Taro SHIRAI, Takahiro DOKI, Satoshi SANO, Akira HORIBA, Toshiyuki SATO
  • Publication number: 20180052240
    Abstract: A X-ray detector having enhanced X-ray sensitivity, which enables dual energy imaging having high diagnostic performance. This X-ray detector includes: scintillator elements which are partitioned by light blocking walls and which convert low-energy X-rays to light; and scintillator elements which are partitioned by light blocking walls and which convert high-energy X-rays to light. When seen from the direction of incidence of the X-rays, the positional pattern of the light blocking walls and that of the light blocking walls are configured so as not to be in alignment with each other. Accordingly, the X-rays incident on the X-ray detector are converted to light by at least either one of the scintillator elements and are finally outputted as X-ray detection signals.
    Type: Application
    Filed: January 26, 2016
    Publication date: February 22, 2018
    Applicant: SHIMADZU CORPORATION
    Inventors: Koichi Tanabe, Shingo Furui, Toshinori Yoshimuta, Kenji Kimura, Akihiro Nishimura, Taro Shirai, Takahiro Doki, Satoshi Sano, Akira Horiba, Toshiyuki Sato
  • Publication number: 20180042571
    Abstract: Provided is a radiation phase difference imaging apparatus in which a separation distance between a phase grating and a radiation detector is optimized. The separation distance between the phase grating and a detection surface of an FPD is determined based on the magnitude of noise corruption in a self-image projected onto the detection surface. The magnitude of the effect of the noise is used as a basis for assessing the separation distance. It is determined whether a distance Zd is appropriate for imaging, based on the magnitude of noise corruption in the self-image in a self-image picture which is obtained when the distance Zd is the distance between the phase grating and the detection surface of the FPD. The separation distance can thus be optimized based on actual conditions of an actual X-ray source that emits a plurality of types of X-rays.
    Type: Application
    Filed: March 6, 2015
    Publication date: February 15, 2018
    Applicant: Shimadzu Corporation
    Inventors: Satoshi SANO, Toshiyuki SATO, Koichi TANABE, Shingo FURUI, Toshinori YOSHIMUTA, Hiroyuki KISHIHARA, Takahiro DOKI, Akira HORIBA
  • Publication number: 20170343486
    Abstract: Provided is a radiation phase-contrast imaging device capable of assuredly detecting a self-image and precisely imaging the internal structure of an object. According to the configuration of the present invention, the longitudinal direction of a detection surface of a flat panel detector is inclined with respect to the extending direction of an absorber in a phase grating. This causes variations in the position (phase) of a projected stripe pattern of a self-image at different positions on the detection surface. This is therefore expected to produce the same effects as those obtainable when a plurality of self-images are obtained by performing imaging a plurality of times in such a manner that the position of the projected self-images on the detection surface varies. This alone, however, results in a single self-image phase for a specific region of the object.
    Type: Application
    Filed: November 20, 2015
    Publication date: November 30, 2017
    Inventors: Koichi TANABE, Shingo FURUI, Hiroyuki KISHIHARA, Kenji KIMURA, Taro SHIRAI, Takahiro DOKI, Satoshi SANO, Akira HORIBA
  • Patent number: 8564082
    Abstract: A radiation detector of this invention has a curable synthetic resin film covering exposed surfaces of a radiation sensitive semiconductor layer, a carrier selective high resistance film and a common electrode, in which a material allowing no chloride to mix in is used in a manufacturing process of the curable synthetic resin film. This prevents pinholes and voids from being formed by chlorine ions in the carrier selective high resistance film and semiconductor layer. Also a protective film which does not transmit ionic materials may be provided between the exposed surface of the common electrode and the curable synthetic resin film, thereby to prevent the carrier selective high resistance film from being corroded by chlorine ions included in the curable synthetic resin film, and to prevent an increase of dark current flowing through the semiconductor layer.
    Type: Grant
    Filed: September 10, 2008
    Date of Patent: October 22, 2013
    Assignee: Shimadzu Corporation
    Inventors: Shingo Furui, Toshinori Yoshimuta, Junichi Suzuki, Koji Watadani, Satoru Morita
  • Patent number: 8466534
    Abstract: The construction of this invention includes an active matrix substrate, an amorphous selenium layer, a high resistance layer, a gold electrode layer, an insulating layer and an auxiliary plate laminated in this order. In one aspect of the present invention, the insulating layer has an inorganic anion exchanger added thereto in order to provide a radiation detector which prevents void formation and pinhole formation in the amorphous semiconductor layer and carrier selective high resistance film, without accumulating electric charges on the auxiliary plate. The inorganic anion exchanger adsorbs chloride ions in the insulating layer, thereby preventing destruction of X-ray detector due to the chloride ions drawn to the gold electrode layer.
    Type: Grant
    Filed: March 26, 2010
    Date of Patent: June 18, 2013
    Assignee: Shimadzu Corporation
    Inventors: Shingo Furui, Toshinori Yoshimuta, Junichi Suzuki, Koji Watadani, Satoru Morita
  • Publication number: 20110315978
    Abstract: The construction of this invention includes an active matrix substrate, an amorphous selenium layer, a high resistance layer, a gold electrode layer, an insulating layer and an auxiliary plate laminated in this order. In one aspect of the present invention, the insulating layer has an inorganic anion exchanger added thereto in order to provide a radiation detector which prevents void formation and pinhole formation in the amorphous semiconductor layer and carrier selective high resistance film, without accumulating electric charges on the auxiliary plate. The inorganic anion exchanger adsorbs chloride ions in the insulating layer, thereby preventing destruction of X-ray detector due to the chloride ions drawn to the gold electrode layer.
    Type: Application
    Filed: March 26, 2010
    Publication date: December 29, 2011
    Inventors: Shingo Furui, Toshinori Yoshimuta, Junichi Suzuki, Koji Watadani, Satoru Morita
  • Patent number: 8034183
    Abstract: In a RLSA microwave plasma processing apparatus that radiates microwave from a microwave generator into a chamber by using a planer antenna (Radial Line Slot Antenna) having many slots formed according to a certain pattern, the chamber contaminated with Na or the like is cleaned by using a cleaning gas containing H2 and O2.
    Type: Grant
    Filed: January 23, 2006
    Date of Patent: October 11, 2011
    Assignee: Tokyo Electron Limited
    Inventors: Shingo Furui, Takashi Kobayashi, Junichi Kitagawa
  • Publication number: 20110163306
    Abstract: A radiation detector of this invention has a curable synthetic resin film covering exposed surfaces of a radiation sensitive semiconductor layer, a carrier selective high resistance film and a common electrode, in which a material allowing no chloride to mix in is used in a manufacturing process of the curable synthetic resin film. This prevents pinholes and voids from being formed by chlorine ions in the carrier selective high resistance film and semiconductor layer. Also a protective film which does not transmit ionic materials may be provided between the exposed surface of the common electrode and the curable synthetic resin film, thereby to prevent the carrier selective high resistance film from being corroded by chlorine ions included in the curable synthetic resin film, and to prevent an increase of dark current flowing through the semiconductor layer.
    Type: Application
    Filed: September 10, 2008
    Publication date: July 7, 2011
    Inventors: Shingo Furui, Toshinori Yoshimuta, Junichi Suzuki, Koji Watadani, Satoru Morita
  • Patent number: 7875322
    Abstract: Pulsated microwaves are supplied to a wave guide tube from a microwave generation unit through a matching circuit. The microwaves are supplied through an inner conductor to a planar antenna member. The microwaves are radiated from the planar antenna member through a microwave transmission plate into space above a wafer within a chamber. An electromagnetic field is formed in the chamber by pulsated microwaves radiated into the chamber from the planar antenna member through the microwave transmission plate, turning an Ar gas, H2 gas and O2 gas into plasma to form an oxide film on the wafer.
    Type: Grant
    Filed: January 5, 2006
    Date of Patent: January 25, 2011
    Assignee: Tokyo Electron Limited
    Inventors: Takashi Kobayashi, Shingo Furui, Junichi Kitagawa
  • Publication number: 20090239352
    Abstract: A silicon oxide film formation method includes generating plasma inside a process chamber of a plasma processing apparatus, by use of a process gas having an oxygen ratio of 1% or more, and a process pressure of 133.3 Pa or less; and oxidizing by the plasma a silicon surface exposed inside a recessed part formed in a silicon layer on a target object, thereby forming a silicon oxide film.
    Type: Application
    Filed: March 28, 2006
    Publication date: September 24, 2009
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Junichi Kitagawa, Shingo Furui
  • Publication number: 20090035484
    Abstract: Pulsated microwaves are supplied to a wave guide tube from a microwave generation unit through a matching circuit. The microwaves are supplied through an inner conductor to a planar antenna member. The microwaves are radiated from the planar antenna member through a microwave transmission plate into space above a wafer within a chamber. An electromagnetic field is formed in the chamber by pulsated microwaves radiated into the chamber from the planar antenna member through the microwave transmission plate, turning an Ar gas, H2 gas and O2 gas into plasma to form an oxide film on the wafer.
    Type: Application
    Filed: January 5, 2006
    Publication date: February 5, 2009
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Takashi Kobayashi, Shingo Furui, Junichi Kitagawa
  • Publication number: 20080317975
    Abstract: In a RLSA microwave plasma processing apparatus that radiates microwave from a microwave generator into a chamber by using a planer antenna (Radial Line Slot Antenna) having many slots formed according to a certain pattern, the chamber contaminated with Na or the like is cleaned by using a cleaning gas containing H2 and O2.
    Type: Application
    Filed: January 23, 2006
    Publication date: December 25, 2008
    Inventors: Shingo Furui, Takashi Kobayashi, Junichi Kitagawa