Patents by Inventor Shingo Mandai

Shingo Mandai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230258785
    Abstract: An electronic device may include a proximity sensor under a cover layer. The proximity sensor may include a light-emitter, such as an infrared light source, and a light-detector, such as an array of single-photon avalanche diodes (SPADs). The SPADs may measure light that has reflected from an external object. However, some of the light may be reflected by the cover layer, creating cross-talk. To distinguish between the cross-talk and signals from the external object, processing circuitry may histogram measurements from the SPADs. In particular, the processing circuitry may histogram near-field and/or far-field measurements into different histograms. The measurements may be weighted and/or gated prior to histogramming. In this way, cross-talk may be distinguished from the near-field and far-field signals.
    Type: Application
    Filed: February 1, 2023
    Publication date: August 17, 2023
    Inventors: Shingo Mandai, Dong Zheng, Tong Chen, Cristiano L Niclass
  • Publication number: 20230015431
    Abstract: A method of building a moving average histogram of photon times of arrival includes, for each time interval in first and second subsets of time intervals, latching a time reference corresponding to a time of receipt of an avalanche timing output signal of a single-photon avalanche diode (SPAD), and advancing a count stored at a memory address corresponding to the latched time reference. The memory address corresponds to a range of time references. The method further includes reading and clearing a first set of counts after the first subset of time intervals; phase-shifting the sequence of time references with respect to a set of memory addresses after the first subset of time intervals; reading and clearing a second set of counts after the second subset of time intervals; and building the moving average histogram using at least the first and second sets of counts.
    Type: Application
    Filed: September 14, 2022
    Publication date: January 19, 2023
    Inventors: Shingo Mandai, Cristiano L. Niclass, Moshe Laifenfeld, Or Nahir, Vyshakh Sanjeev
  • Patent number: 11500094
    Abstract: Sensing apparatus includes a radiation source, which emits pulses of optical radiation toward multiple points in a target scene. A receiver receives the optical radiation that is reflected from the target scene and outputs signals that are indicative of respective times of flight of the pulses to and from the points in the target scene. Processing and control circuitry selects a first pulse repetition interval (PRI) and a second PRI, greater than the first PRI, from a permitted range of PRIs, drives the radiation source to emit a first sequence of the pulses at the first PRI and a second sequence of the pulses at a second PRI, and processes the signals output in response to both the first and second sequences of the pulses in order to compute respective depth coordinates of the points in the target scene.
    Type: Grant
    Filed: May 28, 2020
    Date of Patent: November 15, 2022
    Assignee: APPLE INC.
    Inventors: Thierry Oggier, Bernhard Buettgen, Cristiano L Niclass, Rahmi Hezar, Shingo Mandai, Darshan Shrestha, Gary Chung, Moshe Laifenfeld
  • Publication number: 20220350026
    Abstract: Sensing apparatus includes a radiation source, which emits pulses of optical radiation toward multiple points in a target scene. A receiver receives the optical radiation that is reflected from the target scene and outputs signals that are indicative of respective times of flight of the pulses to and from the points in the target scene. Processing and control circuitry selects a first pulse repetition interval (PRI), a second PRI, greater than the first PRI, and a third PRI, greater than the second PRI, from a permitted range of PRIs, drives the radiation source to emit sequences of the pulses at the first PRI, the second PRI, and the third PRI, and processes the signals output by the receiver in response to the first, second, and third sequences of the pulses in order to compute respective depth coordinates of the points in the target scene.
    Type: Application
    Filed: July 13, 2022
    Publication date: November 3, 2022
    Inventors: Moshe Laifenfeld, Harish Venkataraman, Cristiano L Niclass, Doron Shinbox, Shingo Mandai, Susan A. Thompson
  • Patent number: 11476372
    Abstract: A method of building a moving average histogram of photon times of arrival includes, for each time interval in first and second subsets of time intervals, latching a time reference corresponding to a time of receipt of an avalanche timing output signal of a single-photon avalanche diode (SPAD), and advancing a count stored at a memory address corresponding to the latched time reference. The memory address corresponds to a range of time references. The method further includes reading and clearing a first set of counts after the first subset of time intervals; phase-shifting the sequence of time references with respect to a set of memory addresses after the first subset of time intervals; reading and clearing a second set of counts after the second subset of time intervals; and building the moving average histogram using at least the first and second sets of counts.
    Type: Grant
    Filed: May 12, 2021
    Date of Patent: October 18, 2022
    Assignee: Apple Inc.
    Inventors: Shingo Mandai, Cristiano L. Niclass, Moshe Laifenfeld, Or Nahir, Vyshakh Sanjeev
  • Patent number: 11415679
    Abstract: A sensing device includes a first array of sensing elements, which output a signal indicative of a time of incidence of a single photon on the sensing element. A second array of processing circuits are coupled respectively to the sensing elements and comprise a gating generator, which variably sets a start time of the gating interval for each sensing element within each acquisition period, and a memory, which records the time of incidence of the single photon on each sensing element in each acquisition period. A controller sets, in each of at least some of the acquisition periods, different, respective gating intervals for different ones of the sensing elements.
    Type: Grant
    Filed: January 26, 2020
    Date of Patent: August 16, 2022
    Assignee: APPLE INC.
    Inventors: Anup K. Sharma, Arnaud Laflaquière, Gennadiy A. Agranov, Gershon Rosenblum, Shingo Mandai
  • Publication number: 20220244391
    Abstract: Optical sensing apparatus includes a radiation source, which directs a series of optical pulses toward a target scene. A first array of single-photon detectors receives optical radiation that is reflected from the target scene and outputs electrical pulses in response to incident photons. A second array of counters aggregates and counts the electrical pulses output by the single-photon detectors over respective periods indicated by respective gating signals applied to the counters. Control logic applies the respective gating signals to the counters, in each of a sequence of image frames, so as to cause different ones of the counters to aggregate and count the electrical pulses output by one or more of the single-photon detectors over different, respective gating intervals relative to each of the optical pulses, and to sum the frame histograms generated with different temporal offsets so as to compute and output a cumulative histogram.
    Type: Application
    Filed: December 12, 2021
    Publication date: August 4, 2022
    Inventors: Shingo Mandai, Cristiano L Niclass, Nadav Fine, Oz Barak, Rahmi Hezar
  • Publication number: 20220102404
    Abstract: Disclosed herein are photodetectors using arrays of pixels with single-photon avalanche diodes (SPADs). The pixel arrays may have configurations that include one or more control transistors for each SPAD collocated on the same chip or wafer as the pixels and located on a surface of the wafer opposite to the light gathering surface of the pixel arrays. The control transistors may be positioned or configured for interconnection with a logic chip that is bonded to the wafer of the pixel array. The pixels may be formed in a substrate having doping gradient. The control transistors may be positioned on or within the SPADs, or adjacent to, but isolated from, the SPADs. Isolation between the individual SPADs and the respective control transistors may make use of shallow trench isolation regions or deep trench isolation regions.
    Type: Application
    Filed: September 13, 2021
    Publication date: March 31, 2022
    Inventors: Hong Wei Lee, Cristiano L. Niclass, Shingo Mandai, Xiaofeng Fan
  • Patent number: 11271031
    Abstract: A back-illuminated single-photon avalanche diode (SPAD) image sensor includes a sensor wafer stacked vertically over a circuit wafer. The sensor wafer includes one or more SPAD regions, with each SPAD region including an anode gradient layer, a cathode region positioned adjacent to a front surface of the SPAD region, and an anode avalanche layer positioned over the cathode region. Each SPAD region is connected to a voltage supply and an output circuit in the circuit wafer through inter-wafer connectors. Deep trench isolation elements are used to provide electrical and optical isolation between SPAD regions.
    Type: Grant
    Filed: May 18, 2020
    Date of Patent: March 8, 2022
    Assignee: Apple Inc.
    Inventors: Shingo Mandai, Cristiano L. Niclass, Nobuhiro Karasawa, Xiaofeng Fan, Arnaud Laflaquiere, Gennadiy A. Agranov
  • Patent number: 10962628
    Abstract: Disclosed are devices and methods for scanning sensing systems having an array of light sensing pixels, such as pixels that use single-photon avalanche diodes. Light pulses are emitted into a field of view (FOV) at starts of a sequence of time intervals, and a weighted tabulation of the times-of-flight of the reflected light pulses within each time interval is used to detect an object in the FOV and determine its distance. Each weight is based on the time-of-flight between the emitted pulse and the received reflected light pulse and on the number of the emitted light pulse in the sequence of emitted light pulses. For near objects the weights emphasize times-of-flight from peripheral time intervals of the sequence; for far objects the weights emphasize central time intervals of the sequence.
    Type: Grant
    Filed: January 25, 2018
    Date of Patent: March 30, 2021
    Assignee: Apple Inc.
    Inventors: Moshe Laifenfeld, Tal Kaitz, Shingo Mandai, Cristiano L. Niclass
  • Patent number: 10928492
    Abstract: A single-photon avalanche diode (SPAD) detector includes a pixel array comprising multiple pixels and a memory operably connected to the pixel array. Each pixel includes a SPAD. Various techniques for accumulating signals received from the same SPAD over multiple scans and storing the accumulated signals in the memory are disclosed.
    Type: Grant
    Filed: May 18, 2020
    Date of Patent: February 23, 2021
    Assignee: Apple Inc.
    Inventors: Shingo Mandai, Cristiano L. Niclass
  • Publication number: 20200386890
    Abstract: Sensing apparatus includes a radiation source, which emits pulses of optical radiation toward multiple points in a target scene. A receiver receives the optical radiation that is reflected from the target scene and outputs signals that are indicative of respective times of flight of the pulses to and from the points in the target scene. Processing and control circuitry selects a first pulse repetition interval (PRI) and a second PRI, greater than the first PRI, from a permitted range of PRIs, drives the radiation source to emit a first sequence of the pulses at the first PRI and a second sequence of the pulses at a second PRI, and processes the signals output in response to both the first and second sequences of the pulses in order to compute respective depth coordinates of the points in the target scene.
    Type: Application
    Filed: May 28, 2020
    Publication date: December 10, 2020
    Inventors: Thierry Oggier, Bernhard Buettgen, Cristiano L. Niclass, Rahmi Hezar, Shingo Mandai, Darshan Shrestha, Gary Chung, Moshe Laifenfeld
  • Patent number: 10801886
    Abstract: The sensitivity of one or more single-photon avalanche diodes (SPAD) in a SPAD detector is modulated over time. The sensitivity of all of the SPADs may be modulated, or the sensitivity of one section of the SPADs can be modulated differently from another section of the SPADs. Various techniques for modulating the sensitivity are disclosed.
    Type: Grant
    Filed: January 24, 2018
    Date of Patent: October 13, 2020
    Assignee: Apple Inc.
    Inventors: Shingo Mandai, Andrew Kenneth John McMahon, Cristiano L. Niclass, Thierry Oggier, Tal Kaitz, Moshe Laifenfeld
  • Patent number: 10775507
    Abstract: An electro-optical device includes a laser, which is configured to emit toward a scene pulses of optical radiation. An array of detectors are configured to receive the optical radiation that is reflected from points in the scene and to output signals indicative of respective times of arrival of the received radiation. A controller is coupled to drive the laser to emit a sequence of pulses of the optical radiation toward each of a plurality of points in the scene and to find respective times of flight for the points responsively to the output signals, while controlling a power of the pulses emitted by the laser by counting a number of the detectors outputting the signals in response to each pulse, and reducing the power of a subsequent pulse in the sequence when the number is greater than a predefined threshold.
    Type: Grant
    Filed: August 10, 2017
    Date of Patent: September 15, 2020
    Assignee: APPLE INC.
    Inventors: Shingo Mandai, Cristiano L Niclass, Richard E Bills, Moshe Laifenfeld, Mina A. Rezk, Alexander Shpunt, Ron Sokolovsky, Tal Kaitz, Ronen Akerman, Jason D. Mudge, Andrew J Sutton
  • Publication number: 20200286946
    Abstract: A back-illuminated single-photon avalanche diode (SPAD) image sensor includes a sensor wafer stacked vertically over a circuit wafer. The sensor wafer includes one or more SPAD regions, with each SPAD region including an anode gradient layer, a cathode region positioned adjacent to a front surface of the SPAD region, and an anode avalanche layer positioned over the cathode region. Each SPAD region is connected to a voltage supply and an output circuit in the circuit wafer through inter-wafer connectors. Deep trench isolation elements are used to provide electrical and optical isolation between SPAD regions.
    Type: Application
    Filed: May 18, 2020
    Publication date: September 10, 2020
    Inventors: Shingo Mandai, Cristiano L. Niclass, Nobuhiro Karasawa, Xiaofeng Fan, Arnaud Laflaquiere, Gennadiy A. Agranov
  • Publication number: 20200278429
    Abstract: A single-photon avalanche diode (SPAD) detector includes a pixel array comprising multiple pixels and a memory operably connected to the pixel array. Each pixel includes a SPAD. Various techniques for accumulating signals received from the same SPAD over multiple scans and storing the accumulated signals in the memory are disclosed.
    Type: Application
    Filed: May 18, 2020
    Publication date: September 3, 2020
    Inventors: Shingo Mandai, Cristiano L. Niclass
  • Publication number: 20200158837
    Abstract: A sensing device includes a first array of sensing elements, which output a signal indicative of a time of incidence of a single photon on the sensing element. A second array of processing circuits are coupled respectively to the sensing elements and comprise a gating generator, which variably sets a start time of the gating interval for each sensing element within each acquisition period, and a memory, which records the time of incidence of the single photon on each sensing element in each acquisition period. A controller sets, in each of at least some of the acquisition periods, different, respective gating intervals for different ones of the sensing elements.
    Type: Application
    Filed: January 26, 2020
    Publication date: May 21, 2020
    Inventors: Anup K. Sharma, Arnaud Laflaquière, Gennadiy A. Agranov, Gershon Rosenblum, Shingo Mandai
  • Patent number: 10658419
    Abstract: A back-illuminated single-photon avalanche diode (SPAD) image sensor includes a sensor wafer stacked vertically over a circuit wafer. The sensor wafer includes one or more SPAD regions, with each SPAD region including an anode gradient layer, a cathode region positioned adjacent to a front surface of the SPAD region, and an anode avalanche layer positioned over the cathode region. Each SPAD region is connected to a voltage supply and an output circuit in the circuit wafer through inter-wafer connectors. Deep trench isolation elements are used to provide electrical and optical isolation between SPAD regions.
    Type: Grant
    Filed: September 22, 2017
    Date of Patent: May 19, 2020
    Assignee: Apple Inc.
    Inventors: Shingo Mandai, Cristiano L. Niclass, Nobuhiro Karasawa, Xiaofeng Fan, Arnaud Laflaquiere, Gennadiy A. Agranov
  • Patent number: 10656251
    Abstract: A single-photon avalanche diode (SPAD) detector includes a pixel array comprising multiple pixels and a memory operably connected to the pixel array. Each pixel includes a SPAD. Various techniques for accumulating signals received from the same SPAD over multiple scans and storing the accumulated signals in the memory are disclosed.
    Type: Grant
    Filed: January 24, 2018
    Date of Patent: May 19, 2020
    Assignee: Apple Inc.
    Inventors: Shingo Mandai, Cristiano L. Niclass
  • Patent number: 10620300
    Abstract: A sensing device includes a first array of sensing elements, which output a signal indicative of a time of incidence of a single photon on the sensing element. A second array of processing circuits are coupled respectively to the sensing elements and comprise a gating generator, which variably sets a start time of the gating interval for each sensing element within each acquisition period, and a memory, which records the time of incidence of the single photon on each sensing element in each acquisition period. A controller controls the gating generator during a first sequence of the acquisition periods so as to sweep the gating interval over the acquisition periods and to identify a respective detection window for the sensing element, and during a second sequence of the acquisition periods, to fix the gating interval for each sensing element to coincide with the respective detection window.
    Type: Grant
    Filed: August 20, 2015
    Date of Patent: April 14, 2020
    Assignee: APPLE INC.
    Inventors: Anup K. Sharma, Arnaud Laflaquière, Gennadiy A. Agranov, Gershon Rosenblum, Shingo Mandai