Patents by Inventor Shinichi Iketani

Shinichi Iketani has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10237983
    Abstract: A method for forming a hole plug in a laminate structure is provided. A laminate structure, is formed, including at least a dielectric layer and a first conductive foil on a first side of the dielectric layer. An unpierced or blind hole is formed in the laminate structure extending toward the first conductive foil from a second side of the dielectric layer and at least partially through the dielectric layer, the hole having a hole depth to hole diameter aspect ratio of less than twenty (20) to one (1). In yet another example, the hole aspect ratio may be less than one (1) to one (1). Via fill ink may then be deposited in the hole. The via fill ink is then dried and/or cured to form a hole plug.
    Type: Grant
    Filed: December 23, 2015
    Date of Patent: March 19, 2019
    Assignee: SANMINA CORPORATION
    Inventors: Shinichi Iketani, Dale Kersten
  • Publication number: 20190075662
    Abstract: A multilayer printed circuit board is provided having a first dielectric layer and a first plating resist selectively positioned in the first dielectric layer. A second plating resist may be selectively positioned in the first dielectric layer or a second dielectric layer, the second plating resist separate from the first plating resist. A through hole extends through the first dielectric layer, the first plating resist, and the second plating resist. An interior surface of the through hole is plated with a conductive material except along a length between the first plating resist and the second plating resist. This forms a partitioned plated through hole having a first via segment electrically isolated from a second via segment.
    Type: Application
    Filed: November 5, 2018
    Publication date: March 7, 2019
    Inventors: Shinichi Iketani, Dale Kersten
  • Patent number: 10201085
    Abstract: A multilayer PCB having may include a first sub-composite core having a first core structure sandwiched between a first conductive layer and a second conductive layer, the first core structure including one or more dielectric and conductive layers. A first via hole extends at least partially through the first core structure, wherein an inner surface of the first via hole is plated with a conductive material along a first via segment electrically coupling the first conductive layer to an internal layer or trace within the first core structure. A second via segment extending between the second conductive layer and the internal layer or trace is devoid of the conductive material such that the first via hole is substantially stub free. A first dielectric layer is coupled to the second conductive layer. A second sub-composite core coupled to the first dielectric layer.
    Type: Grant
    Filed: March 21, 2018
    Date of Patent: February 5, 2019
    Assignee: SANMINA CORPORATION
    Inventor: Shinichi Iketani
  • Patent number: 10188001
    Abstract: The present invention relates to printed circuit boards (PCBs), and more particularly, to methods of forming high aspect ratio through holes and high precision stub removal in a printed circuit board (PCB). The high precision stub removal processes may be utilized in removing long stubs and short stubs. In the methods, multiple holes of varying diameter and depth are drilled from an upper and/or lower surface of the printed circuit board utilizing drills of different diameters.
    Type: Grant
    Filed: January 22, 2015
    Date of Patent: January 22, 2019
    Assignee: SANMINA CORPORATION
    Inventors: Douglas Ward Thomas, Shinichi Iketani, Dale Kersten
  • Publication number: 20190021177
    Abstract: A method for making an ultra-thin dielectric printed circuit board (PCB) is provided. A first side of a first conductive layer is removably coupled to a disposable base. A first ultra-thin dielectric layer and a second conductive layer are laminated to a second side of the first conductive layer, where the first ultra-thin dielectric layer is positioned between the first and second conductive layers, and the first ultra-thin dielectric layer is thinner than at least one of the first conductive layer and the second conductive layer. The second conductive layer may then be patterned to form electrical paths. The patterned second conductive layer is then filled with a dielectric filler. One or more conductive layers and one or more ultra-thin dielectric layers may then be coupled to the second conductive layer. The disposable base may then be detached from the first conductive layer.
    Type: Application
    Filed: July 16, 2018
    Publication date: January 17, 2019
    Inventors: Shinichi Iketani, Toshiya Suzuki
  • Patent number: 10123432
    Abstract: A multilayer printed circuit board is provided having a first dielectric layer and a first plating resist selectively positioned in the first dielectric layer. A second plating resist may be selectively positioned in the first dielectric layer or a second dielectric layer, the second plating resist separate from the first plating resist. A through hole extends through the first dielectric layer, the first plating resist, and the second plating resist. An interior surface of the through hole is plated with a conductive material except along a length between the first plating resist and the second plating resist. This forms a partitioned plated through hole having a first via segment electrically isolated from a second via segment.
    Type: Grant
    Filed: October 2, 2017
    Date of Patent: November 6, 2018
    Assignee: SANMINA CORPORATION
    Inventors: Shinichi Iketani, Dale Kersten
  • Publication number: 20180317327
    Abstract: Novel methods for forming a printed circuit board (PCB) having one or more segmented vias are provided, including improved methods of removing the catalyst after the plating process when forming a segmented via in the PCB. After the electroless plating, excess catalyst on the surface of the plating resist is removed using a catalyst remover, such as an acidic solution that includes at least nitrite or nitrite ion and halogen ion, or the catalyst remover may be an etchant for plating resist, such as alkaline permanganate compound solution or plasma gas comprising at least one of oxygen, nitrogen, argon and tetrafluoromethane, or a mixture of at least two of these gasses. After removal of the excess catalyst, electrolytic plating is then applied to the through holes and the outer layer circuit or signal traces are formed. That is, the etching of paths on the conductive foils/layers of the core structure.
    Type: Application
    Filed: April 26, 2018
    Publication date: November 1, 2018
    Inventors: Shinichi IKETANI, Dale KERSTEN
  • Publication number: 20180279473
    Abstract: A multilayer PCB having may include a first sub-composite core having a first core structure sandwiched between a first conductive layer and a second conductive layer, the first core structure including one or more dielectric and conductive layers. A first via hole extends at least partially through the first core structure, wherein an inner surface of the first via hole is plated with a conductive material along a first via segment electrically coupling the first conductive layer to an internal layer or trace within the first core structure. A second via segment extending between the second conductive layer and the internal layer or trace is devoid of the conductive material such that the first via hole is substantially stub free. A first dielectric layer is coupled to the second conductive layer. A second sub-composite core coupled to the first dielectric layer.
    Type: Application
    Filed: March 21, 2018
    Publication date: September 27, 2018
    Inventor: Shinichi Iketani
  • Publication number: 20180110133
    Abstract: A method of making printed circuit board vias using a double drilling and plating method is disclosed. A first hole is drilled in a core, the first hole having a first diameter. The first hole is filled and/or plated with an electrically conductive material. A circuit pattern may be formed on one or two conductive layers of the core. A multilayer structure may then be formed including a plurality of cores that also include pre-drilled and plated via holes, wherein at least some of the pre-drilled and plated via holes are aligned with the first hole. A second hole is then drilled within the first hole and the aligned pre-drilled and plated holes, the second hole having a second diameter where the second diameter is smaller than the first diameter. A conductive material is then plated to an inner surface of the second hole.
    Type: Application
    Filed: October 13, 2017
    Publication date: April 19, 2018
    Inventors: Shinichi Iketani, Douglas Ward Thomas
  • Publication number: 20180098426
    Abstract: A multilayer printed circuit board is provided having a first dielectric layer and a first plating resist selectively positioned in the first dielectric layer. A second plating resist may be selectively positioned in the first dielectric layer or a second dielectric layer, the second plating resist separate from the first plating resist. A through hole extends through the first dielectric layer, the first plating resist, and the second plating resist. An interior surface of the through hole is plated with a conductive material except along a length between the first plating resist and the second plating resist. This forms a partitioned plated through hole having a first via segment electrically isolated from a second via segment.
    Type: Application
    Filed: October 2, 2017
    Publication date: April 5, 2018
    Inventors: Shinichi Iketani, Dale Kersten, George Dudnikov, JR.
  • Publication number: 20180092222
    Abstract: A multilayer printed circuit board is provided having a first dielectric layer and a first plating resist selectively positioned in the first dielectric layer. A second plating resist may be selectively positioned in the first dielectric layer or a second dielectric layer, the second plating resist separate from the first plating resist. A through hole extends through the first dielectric layer, the first plating resist, and the second plating resist. An interior surface of the through hole is plated with a conductive material except along a length between the first plating resist and the second plating resist. This forms a partitioned plated through hole having a first via segment electrically isolated from a second via segment.
    Type: Application
    Filed: October 2, 2017
    Publication date: March 29, 2018
    Inventors: Shinichi Iketani, Dale Kersten
  • Patent number: 9781830
    Abstract: A multilayer printed circuit board is provided having a first dielectric layer and a first plating resist selectively positioned in the first dielectric layer. A second plating resist may be selectively positioned in the first dielectric layer or a second dielectric layer, the second plating resist separate from the first plating resist. A through hole extends through the first dielectric layer, the first plating resist, and the second plating resist. An interior surface of the through hole is plated with a conductive material except along a length between the first plating resist and the second plating resist. This forms a partitioned plated through hole having a first via segment electrically isolated from a second via segment.
    Type: Grant
    Filed: March 11, 2014
    Date of Patent: October 3, 2017
    Assignee: Sanmina Corporation
    Inventors: Shinichi Iketani, Dale Kersten, George Dudnikov, Jr.
  • Patent number: 9781844
    Abstract: A multilayer printed circuit board is provided having a first dielectric layer and a first plating resist selectively positioned in the first dielectric layer. A second plating resist may be selectively positioned in the first dielectric layer or a second dielectric layer, the second plating resist separate from the first plating resist. A through hole extends through the first dielectric layer, the first plating resist, and the second plating resist. An interior surface of the through hole is plated with a conductive material except along a length between the first plating resist and the second plating resist. This forms a partitioned plated through hole having a first via segment electrically isolated from a second via segment.
    Type: Grant
    Filed: March 11, 2014
    Date of Patent: October 3, 2017
    Assignee: SANMINA CORPORATION
    Inventors: Shinichi Iketani, Dale Kersten
  • Patent number: 9661758
    Abstract: Cost effective and efficient methods to maximize printed circuit board (PCB) utilization with minimized signal degradation are provided. The methods include electrically isolating a segmented via structure by controlling the formation of a conductive material within a plated via structure by utilizing different diameter drills within a via structure for trimming the conductive material at the via shoulder (i.e., the rim of a drilled two diameter hole boundary). The trimmed portion may be voided in the via structure for allowing electrically isolated plated through-hole (PTH) segments. One or more areas of trimmed rims within the via structure are used to form multiple stair like diameter holes to create one or more voids in the via structure. As a result, the formation of conductive material within the via structure may be limited to those areas necessary for the transmission of electrical signals.
    Type: Grant
    Filed: August 19, 2014
    Date of Patent: May 23, 2017
    Assignee: SANMINA CORPORATION
    Inventors: Douglas Ward Thomas, Shinichi Iketani
  • Publication number: 20160219703
    Abstract: A method for forming a hole plug in a laminate structure is provided. A laminate structure, is formed, including at least a dielectric layer and a first conductive foil on a first side of the dielectric layer. An unpierced or blind hole is formed in the laminate structure extending toward the first conductive foil from a second side of the dielectric layer and at least partially through the dielectric layer, the hole having a hole depth to hole diameter aspect ratio of less than twenty (20) to one (1). In yet another example, the hole aspect ratio may be less than one (1) to one (1). Via fill ink may then be deposited in the hole. The via fill ink is then dried and/or cured to form a hole plug.
    Type: Application
    Filed: December 24, 2015
    Publication date: July 28, 2016
    Inventors: Shinichi Iketani, Dale Kersten
  • Publication number: 20150208514
    Abstract: The present invention relates to printed circuit boards (PCBs), and more particularly, to methods of forming high aspect ratio through holes and high precision stub removal in a printed circuit board (PCB). The high precision stub removal processes may be utilized in removing long stubs and short stubs. In the methods, multiple holes of varying diameter and depth are drilled from an upper and/or lower surface of the printed circuit board utilizing drills of different diameters.
    Type: Application
    Filed: January 22, 2015
    Publication date: July 23, 2015
    Inventors: Douglas Ward THOMAS, Shinichi IKETANI, Dale KERSTEN
  • Publication number: 20150181724
    Abstract: Novel methods for forming a printed circuit board (PCB) having one or more segmented vias are provided, including improved methods of removing the catalyst after the plating process when forming a segmented via in the PCB. After the electroless plating, excess catalyst on the surface of the plating resist is removed using a catalyst remover, such as an acidic solution that includes at least nitrite or nitrite ion and halogen ion, or the catalyst remover may be an etchant for plating resist, such as alkaline permanganate compound solution or plasma gas comprising at least one of oxygen, nitrogen, argon and tetrafluoromethane, or a mixture of at least two of these gasses. After removal of the excess catalyst, electrolytic plating is then applied to the through holes and the outer layer circuit or signal traces are formed. That is, the etching of paths on the conductive foils/layers of the core structure.
    Type: Application
    Filed: December 17, 2014
    Publication date: June 25, 2015
    Inventors: Shinichi IKETANI, Dale KERSTEN
  • Publication number: 20150047188
    Abstract: Cost effective and efficient methods to maximize printed circuit board (PCB) utilization with minimized signal degradation are provided. The methods include electrically isolating a segmented via structure by controlling the formation of a conductive material within a plated via structure by utilizing different diameter drills within a via structure for trimming the conductive material at the via shoulder (i.e., the rim of a drilled two diameter hole boundary). The trimmed portion may be voided in the via structure for allowing electrically isolated plated through-hole (PTH) segments. One or more areas of trimmed rims within the via structure are used to form multiple stair like diameter holes to create one or more voids in the via structure. As a result, the formation of conductive material within the via structure may be limited to those areas necessary for the transmission of electrical signals.
    Type: Application
    Filed: August 19, 2014
    Publication date: February 19, 2015
    Inventors: Douglas Ward Thomas, Shinichi Iketani
  • Publication number: 20150007933
    Abstract: A core or sub-composite structure is provided including a dielectric layer between a first conductive film and a second conductive film. The first conductive film may include a first peelable/removable cover layer formed on or coupled to a first conductive layer. The second conductive film may include a second peelable/removable cover layer formed on or coupled to a second conductive layer.
    Type: Application
    Filed: June 23, 2014
    Publication date: January 8, 2015
    Inventors: Shinichi Iketani, Dale Kersten
  • Publication number: 20140262455
    Abstract: A multilayer printed circuit board is provided having a first dielectric layer and a first plating resist selectively positioned in the first dielectric layer. A second plating resist may be selectively positioned in the first dielectric layer or a second dielectric layer, the second plating resist separate from the first plating resist. A through hole extends through the first dielectric layer, the first plating resist, and the second plating resist. An interior surface of the through hole is plated with a conductive material except along a length between the first plating resist and the second plating resist. This forms a partitioned plated through hole having a first via segment electrically isolated from a second via segment.
    Type: Application
    Filed: March 11, 2014
    Publication date: September 18, 2014
    Applicant: SANMINA CORPORATION
    Inventors: Shinichi Iketani, Dale Kersten