Patents by Inventor Shinichiro Kakei

Shinichiro Kakei has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8435645
    Abstract: A dielectric device comprises a substrate made of a metal and an oxide dielectric layer mounted on a surface of the substrate. The surface of the substrate has metal oxide regions distributed like islands, while the oxide dielectric layer is in close contact with the substrate through the metal oxide regions. Since adhesion is higher in an area where the substrate and the oxide dielectric layer are in close contact with each other through the metal oxide regions distributed like islands on the surface of the substrate, the adhesion between the substrate and oxide dielectric layer in the dielectric device is enhanced. As compared with a case where a rough surface is formed on a metal foil, the metal oxide region and the substrate are inhibited from forming a rough surface, whereby leakage characteristics can be kept from being deteriorated by the rough surface.
    Type: Grant
    Filed: March 19, 2010
    Date of Patent: May 7, 2013
    Assignee: TDK Corporation
    Inventors: Akira Shibue, Tomohiko Kato, Shinichiro Kakei, Yasunobu Oikawa, Kenji Horino
  • Patent number: 8294036
    Abstract: In a dielectric element, the side faces are roughened so that the surface roughness Ra is 15 nm or greater. By this means, the area of contact between a glass epoxy resin substrate and insulating material is increased, adhesion with resin substrates is improved, and strength and reliability can be enhanced when buried between two resin substrates. In the dielectric element, the surface roughness Ra of side surfaces is 5000 nm or less, so that when burying the dielectric element between a glass epoxy resin substrate and insulating material, the occurrence of air bubbles between the surface of the dielectric element and the resin can be prevented.
    Type: Grant
    Filed: March 25, 2009
    Date of Patent: October 23, 2012
    Assignee: TDK Corporation
    Inventors: Shinichiro Kakei, Kenji Horino, Hitoshi Saita, Yasunobu Oikawa
  • Patent number: 8149584
    Abstract: In a dielectric element, the angle ? made by either the top face or the bottom face and the side faces is either 0°<?<89°, or is 91°<?<180°, and is an angle other than 89°???91°. By this means, the area of contact of the side faces of the dielectric element with a glass epoxy resin substrate and with insulating material is increased, adhesion with the resin substrates is improved, and strength and reliability can be enhanced when buried between the two resin substrates.
    Type: Grant
    Filed: March 25, 2009
    Date of Patent: April 3, 2012
    Assignee: TDK Corporation
    Inventors: Hitoshi Saita, Kenji Horino, Yasunobu Oikawa, Shinichiro Kakei
  • Patent number: 7929272
    Abstract: A dielectric device having a dielectric layer and first to nth metal layers (where n is an integer of 2 or greater) in contact with the dielectric layer. At least one of the first to nth metal layers contains a base metal. Interfaces between the first to nth metal layers and the dielectric layer have respective arithmetic mean roughnesses of Ra1 to Ran (nm), while an average value Ram (nm) of the arithmetic mean roughnesses of Ra1 to Ran (nm) and a thickness T (nm) of the dielectric layer satisfy T/Ram ?1.3.
    Type: Grant
    Filed: June 4, 2007
    Date of Patent: April 19, 2011
    Assignee: TDK Corporation
    Inventors: Shinichiro Kakei, Hitoshi Saita, Kuniji Koike, Kenji Horino
  • Publication number: 20100260981
    Abstract: A dielectric device comprises a substrate made of a metal and an oxide dielectric layer mounted on a surface of the substrate. The surface of the substrate has metal oxide regions distributed like islands, while the oxide dielectric layer is in close contact with the substrate through the metal oxide regions. Since adhesion is higher in an area where the substrate and the oxide dielectric layer are in close contact with each other through the metal oxide regions distributed like islands on the surface of the substrate, the adhesion between the substrate and oxide dielectric layer in the dielectric device is enhanced. As compared with a case where a rough surface is formed on a metal foil, the metal oxide region and the substrate are inhibited from forming a rough surface, whereby leakage characteristics can be kept from being deteriorated by the rough surface.
    Type: Application
    Filed: March 19, 2010
    Publication date: October 14, 2010
    Applicant: TDK CORPORATION
    Inventors: Akira SHIBUE, Tomohiko KATO, Shinichiro KAKEI, Yasunobu OIKAWA, Kenji HORINO
  • Publication number: 20090242256
    Abstract: In a dielectric element, the angle ? made by either the top face or the bottom face and the side faces is either 0°<?<89°, or is 91°<?<180°, and is an angle other than 89°???91°. By this means, the area of contact of the side faces of the dielectric element with a glass epoxy resin substrate and with insulating material is increased, adhesion with the resin substrates is improved, and strength and reliability can be enhanced when buried between the two resin substrates.
    Type: Application
    Filed: March 25, 2009
    Publication date: October 1, 2009
    Applicant: TDK CORPORATION
    Inventors: Hitoshi Saita, Kenji Horino, Yasunobu Oikawa, Shinichiro Kakei
  • Publication number: 20090242257
    Abstract: In a dielectric element, the side faces are roughened so that the surface roughness Ra is 15 nm or greater. By this means, the area of contact between a glass epoxy resin substrate and insulating material is increased, adhesion with resin substrates is improved, and strength and reliability can be enhanced when buried between two resin substrates. In the dielectric element, the surface roughness Ra of side surfaces is 5000 nm or less, so that when burying the dielectric element between a glass epoxy resin substrate and insulating material, the occurrence of air bubbles between the surface of the dielectric element and the resin can be prevented.
    Type: Application
    Filed: March 25, 2009
    Publication date: October 1, 2009
    Applicant: TDK CORPORATION
    Inventors: Shinichiro KAKEI, Kenji HORINO, Hitoshi SAITA, Yasunobu OIKAWA
  • Patent number: 7517406
    Abstract: Proposed is a technique of producing a magnetic garnet material of which the light absorption characteristics worsen little even though it is produced through LPE. The crucible for LPE is formed of a material containing Au. The amount of Au to be taken in single crystal formed in an Au crucible is smaller than that of Pt to be taken therein formed in a Pt crucible. As compared with Pt, the influence of Au on magnetic garnet film that increases the insertion loss in the film is small.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: April 14, 2009
    Assignee: TDK Corporation
    Inventors: Atsushi Ohido, Tamotsu Sugawara, Kazuhito Yamasawa, Shinichiro Kakei, Kazuya Shimakawa, Katsunori Hosoya
  • Publication number: 20080112046
    Abstract: Proposed is a technique of producing a magnetic garnet material of which the light absorption characteristics worsen little even though it is produced through LPE. The crucible for LPE is formed of a material containing Au. The amount of Au to be taken in single crystal formed in an Au crucible is smaller than that of Pt to be taken therein formed in a Pt crucible. As compared with Pt, the influence of Au on magnetic garnet film that increases the insertion loss in the film is small.
    Type: Application
    Filed: December 21, 2007
    Publication date: May 15, 2008
    Applicant: TDK Corporation
    Inventors: Atsushi Ohido, Tamotsu Sugawara, Kazuhito Yamasawa, Shinichiro Kakei, Kazuya Shimakawa, Katsunori Hosoya
  • Patent number: 7333261
    Abstract: A of producing a magnetic garnet material of which the light absorption characteristics worsen little even though it is produced through LPE. The crucible for LPE is formed of a material containing Au. The amount of Au to be taken in single crystal formed in an Au crucible is smaller than that of Pt to be taken therein formed in a Pt crucible. As compared with Pt, the influence of Au on magnetic garnet film that increases the insertion loss in the film is small.
    Type: Grant
    Filed: April 7, 2006
    Date of Patent: February 19, 2008
    Assignee: TDK Corporation
    Inventors: Atsushi Ohido, Tamotsu Sugawara, Kazuhito Yamasawa, Shinichiro Kakei, Kazuya Shimakawa, Katsunori Hosoya
  • Publication number: 20070278627
    Abstract: A dielectric device comprises a dielectric layer and first to nth metal layers (where n is an integer of 2 or greater) in contact with the dielectric layer. At least one of the first to nth metal layers contains a base metal. Interfaces between the first to nth metal layers and the dielectric layer have respective arithmetic mean roughnesses of Ra1 to Ran (nm), while an average value Ram (nm) of the arithmetic mean roughnesses of Ra1 to Ran (nm) and a thickness T (nm) of the dielectric layer satisfy T/Ram?1.3.
    Type: Application
    Filed: June 4, 2007
    Publication date: December 6, 2007
    Applicant: TDK CORPORATION
    Inventors: Shinichiro Kakei, Hitoshi Saita, Kuniji Koike, Kenji Horino
  • Patent number: 7133189
    Abstract: Proposed is a technique of producing a magnetic garnet material of which the light absorption characteristics worsen little even though it is produced through LPE. The crucible for LPE is formed of a material containing Au. The amount of Au to be taken in single crystal formed in an Au crucible is smaller than that of Pt to be taken therein formed in a Pt crucible. As compared with Pt, the influence of Au on magnetic garnet film that increases the insertion loss in the film is small.
    Type: Grant
    Filed: February 14, 2003
    Date of Patent: November 7, 2006
    Assignee: TDK Corporation
    Inventors: Atsushi Ohido, Tamotsu Sugawara, Kazuhito Yamasawa, Shinichiro Kakei, Kazuya Shimakawa, Katsunori Hosoya
  • Publication number: 20060187546
    Abstract: Proposed is a technique of producing a magnetic garnet material of which the light absorption characteristics worsen little even though it is produced through LPE. The crucible for LPE is formed of a material containing Au. The amount of Au to be taken in single crystal formed in an Au crucible is smaller than that of Pt to be taken therein formed in a Pt crucible. As compared with Pt, the influence of Au on magnetic garnet film that increases the insertion loss in the film is small.
    Type: Application
    Filed: April 7, 2006
    Publication date: August 24, 2006
    Applicant: TDK Corporation
    Inventors: Atsushi Ohido, Tamotsu Sugawara, Kazuhito Yamasawa, Shinichiro Kakei, Kazuya Shimakawa, Katsunori Hosoya
  • Patent number: 6853473
    Abstract: The invention relates to an optical device for polarizing light by changing its Faraday rotation angle, such as optical attenuators, optical switches or polarization controllers; and its object is to provide such an optical device which can be driven even by small-sized and power-saving magnetic circuits and in which the insertion loss in the Faraday rotator may be reduced. The optical device comprises a Faraday rotator formed of a garnet single crystal, and a magnetic circuit applying an external magnetic field H that is smaller than the saturation magnetic field Hs of the Faraday rotator to the Faraday rotator.
    Type: Grant
    Filed: January 21, 2003
    Date of Patent: February 8, 2005
    Assignee: TDK Corporation
    Inventors: Atsushi Ohido, Kenichi Tohchi, Kazuhito Yamasawa, Shinichiro Kakei
  • Publication number: 20030219261
    Abstract: Proposed is a technique of producing a magnetic garnet material of which the light absorption characteristics worsen little even though it is produced through LPE. The crucible for LPE is formed of a material containing Au. The amount of Au to be taken in single crystal formed in an Au crucible is smaller than that of Pt to be taken therein formed in a Pt crucible. As compared with Pt, the influence of Au on magnetic garnet film that increases the insertion loss in the film is small.
    Type: Application
    Filed: February 14, 2003
    Publication date: November 27, 2003
    Applicant: TDK Corporation
    Inventors: Atsushi Ohido, Tamotsu Sugawara, Kazuhito Yamasawa, Shinichiro Kakei, Kazuya Shimakawa, Katsunori Hosoya
  • Publication number: 20030137718
    Abstract: The invention relates to an optical device for polarizing light by changing its Faraday rotation angle, such as optical attenuators, optical switches or polarization controllers; and its object is to provide such an optical device which can be driven even by small-sized and power-saving magnetic circuits and in which the insertion loss in the Faraday rotator may be reduced. The optical device comprises a Faraday rotator formed of a garnet single crystal, and a magnetic circuit applying an external magnetic field H that is smaller than the saturation magnetic field Hs of the Faraday rotator to the Faraday rotator.
    Type: Application
    Filed: January 21, 2003
    Publication date: July 24, 2003
    Applicant: TDK CORPORATION
    Inventors: Atsushi Ohido, Kenichi Tohchi, Kazuhito Yamasawa, Shinichiro Kakei