Patents by Inventor Shinichiro Mizoguchi

Shinichiro Mizoguchi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10138842
    Abstract: Apparatus for utilizing heat wasted from an engine includes: a Rankine cycle (31); a transmission mechanism that couples an output shaft of an expansion device (37) to a rotary shaft of an engine via an electromagnetic clutch (32) that can be engaged and disengaged; a passage (65) through which refrigerant exiting a heat exchanger (36) flows so as to bypass the expansion device (37); and a bypass valve (66) interposed in the passage. To stop the expansion device (37), the electromagnetic clutch (32) is switched from an engaged state to a disengaged state after switching the bypass valve (66) from a closed state to an open state. If the bypass valve (66) becomes stuck in the closed state, expansion device front-rear differential pressure limiting processing in which a front-rear differential pressure of the expansion device is limited while maintaining the electromagnetic clutch (32) in the engaged state is performed.
    Type: Grant
    Filed: May 14, 2015
    Date of Patent: November 27, 2018
    Assignee: SANDEN HOLDINGS CORPORATION
    Inventors: Shinichiro Mizoguchi, Hiroyuki Nagai, Tomonori Haraguchi
  • Patent number: 9988945
    Abstract: Apparatus for utilizing heat wasted from an engine includes first pressure detecting means (73) and first temperature detecting means (81) for detecting a pressure and a temperature in a refrigerant passage extending from a condenser (38) to a refrigerant pump (32), second pressure detecting means (72) and second temperature detecting means (82) for detecting a pressure and a temperature in a refrigerant passage extending from a heat exchanger (36) to an expansion device (37), and control means (71) responsive to these four detecting means when operating a Rankine cycle (31). Means (71) is for diagnosing whether or not an electromagnetic clutch (35) is stuck responsive to either the first pressure detecting means (73) and the first temperature detecting means (81), or the second pressure detecting means (72) and the second temperature detecting means (82).
    Type: Grant
    Filed: May 14, 2015
    Date of Patent: June 5, 2018
    Assignee: SANDEN HOLDINGS CORPORATION
    Inventors: Shinichiro Mizoguchi, Hiroyuki Nagai, Tomonori Haraguchi
  • Publication number: 20170107861
    Abstract: Apparatus for utilizing heat wasted from an engine includes first pressure detecting means (73) and first temperature detecting means (81) for detecting a pressure and a temperature in a refrigerant passage extending from a condenser (38) to a refrigerant pump (32), second pressure detecting means (72) and second temperature detecting means (82) for detecting a pressure and a temperature in a refrigerant passage extending from a heat exchanger (36) to an expansion device (37), and control means (71) responsive to these four detecting means when operating a Rankine cycle (31). Means (71) is for diagnosing whether or not an electromagnetic clutch (35) is stuck responsive to either the first pressure detecting means (73) and the first temperature detecting means (81), or the second pressure detecting means (72) and the second temperature detecting means (82).
    Type: Application
    Filed: May 14, 2015
    Publication date: April 20, 2017
    Applicant: Sanden Holdings Corporation
    Inventors: Shinichiro MIZOGUCHI, Hiroyuki NAGAI, Tomonori HARAGUCHI
  • Publication number: 20170082061
    Abstract: Apparatus for utilizing heat wasted from an engine includes: a Rankine cycle (31); a transmission mechanism that couples an output shaft of an expansion device (37) to a rotary shaft of an engine via an electromagnetic clutch (32) that can be engaged and disengaged; a passage (65) through which refrigerant exiting a heat exchanger (36) flows so as to bypass the expansion device (37); and a bypass valve (66) interposed in the passage. To stop the expansion device (37), the electromagnetic clutch (32) is switched from an engaged state to a disengaged state after switching the bypass valve (66) from a closed state to an open state. If the bypass valve (66) becomes stuck in the closed state, expansion device front-rear differential pressure limiting processing in which a front-rear differential pressure of the expansion device is limited while maintaining the electromagnetic clutch (32) in the engaged state is performed.
    Type: Application
    Filed: May 14, 2015
    Publication date: March 23, 2017
    Applicant: Sanden Holdings Corporation
    Inventors: Shinichiro MIZOGUCHI, Hiroyuki NAGAI, Tomonori HARAGUCHI
  • Patent number: 9562444
    Abstract: An engine-waste-heat utilization device includes a Rankine cycle which includes a heat exchanger through which cooling water coming out from an engine flows to recover waste-heat of the engine to refrigerant, an expander which generates power using the refrigerant coming out from the heat exchanger, a condenser which condenses the refrigerant coming out from the expander and a refrigerant pump which supplies the refrigerant coming out from the condenser to the heat exchanger, and a cooling water passage in which the cooling water having a higher temperature flows when the Rankine cycle is operated than when the Rankine cycle is not operated.
    Type: Grant
    Filed: August 6, 2012
    Date of Patent: February 7, 2017
    Assignee: NISSAN MOTOR CO., LTD.
    Inventors: Hiroyuki Nagai, Shinichiro Mizoguchi, Takayuki Ishikawa
  • Patent number: 9523290
    Abstract: A Rankine cycle includes a refrigerant pump, a heat exchanger, an expander and a condenser. The Rankine cycle further includes a clutch provided in a power transmission path extending from an engine to the refrigerant pump. Prior to the operation of the Rankine cycle and during the deceleration of the vehicle, the clutch is fastened and the refrigerant pump is driven with use of the vehicle inertia force.
    Type: Grant
    Filed: July 24, 2012
    Date of Patent: December 20, 2016
    Assignee: SANDEN HOLDINGS CORPORATION
    Inventors: Shinichiro Mizoguchi, Satoshi Ogihara, Hirofumi Wada
  • Patent number: 9441503
    Abstract: A waste heat utilization apparatus is provided with a Rankine cycle and a power transmission mechanism that transmits power regenerated by an expander to an engine. The power transmission mechanism includes an expander clutch that interrupts or permits the transmission of the power from the expander to the engine. The expander includes a rotational speed sensor that detects a rotational speed of the expander. An increase in friction of the expander is detected on the basis of an increase in the rotational speed of the expander detected by the rotational speed sensor when the expander clutch is disconnected.
    Type: Grant
    Filed: August 14, 2012
    Date of Patent: September 13, 2016
    Assignee: SANDEN HOLDINGS CORPORATION
    Inventors: Takayuki Ishikawa, Shinichiro Mizoguchi, Hiroyuki Nagai, Riyako Iwahashi, Satoshi Ogihara, Tomonori Haraguchi
  • Patent number: 9328632
    Abstract: A Rankine cycle includes an waste-heat recovery device that is configured to exchange heat between cooling water coming out from an engine and exhaust gas exhausted from the engine, a heat exchanger including an evaporator through which the cooling water coming out from the engine flows to recover waste-heat of the engine to refrigerant, and a superheater through which the cooling water coming out from the waste-heat recovery device flows to recover the waste-heat of the engine to the refrigerant, an expander that is configured to generate power using the refrigerant coming out from the heat exchanger, a condenser that is configured to condense the refrigerant coming out from the expander, and a refrigerant pump that is configured to supply the refrigerant coming out from the condenser to the heat exchanger by being driven by the expander. The cooling water coming out from the superheater is returned to the engine after being joined with the cooling water coming out from the evaporator.
    Type: Grant
    Filed: August 14, 2012
    Date of Patent: May 3, 2016
    Assignee: NISSAN MOTOR CO., LTD.
    Inventors: Hiroyuki Nagai, Tomohiko Saitou, Takayuki Ishikawa, Shinichiro Mizoguchi
  • Patent number: 9291074
    Abstract: An engine-waste-heat utilization device includes a Rankine cycle with a heat exchanger that is configured to recover engine-waste-heat to refrigerant, an expander that is configured to generate power using the refrigerant coming out from the heat exchanger, a condenser that is configured to condense the refrigerant coming out from the expander and a refrigerant pump that is configured to supply the refrigerant coming out from the condenser to the heat exchanger by being driven by the expander, a power transmission mechanism (crank pulley, pump pulley, belt) that is configured to transmit surplus power to the engine when the expander has spare power even if the refrigerant pump is driven, a clutch that is configured to connect and disconnecting power transmission by the power transmission mechanism, and a case provided near a high-temperature part of the engine such that a shaft of the expander and that of the refrigerant pump are coaxially arranged, the clutch, the refrigerant pump and the expander are integr
    Type: Grant
    Filed: August 6, 2012
    Date of Patent: March 22, 2016
    Assignees: NISSAN MOTOR CO., LTD., SANDEN CORPORATION
    Inventors: Hiroyuki Nagai, Takayuki Ishikawa, Shinichiro Mizoguchi, Riyako Iwahashi, Shinji Nakamura
  • Publication number: 20150047351
    Abstract: A waste heat utilization apparatus is provided with a Rankine cycle and a power transmission mechanism that transmits power regenerated by an expander to an engine. The power transmission mechanism includes an expander clutch that interrupts or permits The transmission of the power from to expander to the engine. The expander includes a rotational speed sensor that detects a rotational speed of the expander. An increase in friction of the expander is detected on the basis of an increase in the rotational speed of the expander detected by the rotational speed sensor when the expander clutch is disconnected.
    Type: Application
    Filed: August 14, 2012
    Publication date: February 19, 2015
    Inventors: Takayuki Ishikawa, Shinichiro Mizoguchi, Hiroyuki Nagai, Riyako Iwahashi, Satoshi Ogihara, Tomonori Haraguchi
  • Publication number: 20140250886
    Abstract: The Rankine cycle (31) includes a refrigerant pump (32), a heat exchanger (36), an expander (37), and a condenser (38). The Rankine cycle (31) shares the condenser (38) and refrigerant with a refrigerant cycle of an air-conditioner. A refrigerant passage connecting to an outlet of the condenser (38) branches at a refrigeration cycle branch point (45) to connect to the refrigerant pump (32) and an evaporator (55). In the case of operating the Rankine cycle, without a request to operate the air-conditioner, the compressor (52) in the refrigeration cycle is driven.
    Type: Application
    Filed: July 20, 2012
    Publication date: September 11, 2014
    Applicant: SANDEN CORPORATION
    Inventors: Shinichiro Mizoguchi, Takayuki Ishikawa, Hiroyuki Nagai, Riyako Iwahashi, Satoshi Ogihara, Tomonori Haraguchi
  • Publication number: 20140250889
    Abstract: A Rankine cycle includes a refrigerant pump, a heat exchanger, an expander and a condenser. The Rankine cycle further includes a clutch provided in a power transmission path extending from an engine to the refrigerant pump. Prior to the operation of the Rankine cycle and during the deceleration of the vehicle, the clutch is fastened and the refrigerant pump is driven with use of the vehicle inertia force.
    Type: Application
    Filed: July 24, 2012
    Publication date: September 11, 2014
    Inventors: Shinichiro Mizoguchi, Satoshi Ogihara, Hirofumi Wada
  • Publication number: 20140208754
    Abstract: A Rankine cycle includes an waste-heat recovery device that is configured to exchange heat between cooling water coming out from an engine and exhaust gas exhausted from the engine, a heat exchanger including an evaporator through which the cooling water coming out from the engine flows to recover waste-heat of the engine to refrigerant, and a superheater through which the cooling water coming out from the waste-heat recovery device flows to recover the waste-heat of the engine to the refrigerant, an expander that is configured to generate power using the refrigerant coming out from the heat exchanger, a condenser that is configured to condense the refrigerant coming out from the expander, and a refrigerant pump that is configured to supply the refrigerant coming out from the condenser to the heat exchanger by being driven by the expander. The cooling water coming out from the superheater is returned to the engine after being joined with the cooling water coming out from the evaporator.
    Type: Application
    Filed: August 14, 2012
    Publication date: July 31, 2014
    Applicant: NISSAN MOTOR CO., LTD.
    Inventors: Hiroyuki Nagai, Tomohiko Saitou, Takayuki Ishikawa, Shinichiro Mizoguchi
  • Publication number: 20140174087
    Abstract: A Rankine cycle system includes a refrigerant pump which is mounted on an engine and is configured to feed refrigerant, a heat exchanger which is mounted on the engine and is configured to recover exhaust heat of the engine to the refrigerant, an expander which is mounted on the engine and is configured to convert the exhaust heat recovered to the refrigerant into power by expanding the refrigerant whose temperature has been increased by the heat exchanger, and a condenser which is mounted on a vehicle body and is configured to condense the refrigerant expanded by the expander. The expander and the condenser, and the condenser and the refrigerant pump are connected by flexible pipes having higher flexibility than other pipes.
    Type: Application
    Filed: September 6, 2012
    Publication date: June 26, 2014
    Applicant: NISSAN MOTOR CO., LTD.
    Inventors: Shinichiro Mizoguchi, Takayuki Ishikawa, Hiroyuki Nagai, Riyako Iwahashi, Satoshi Ogihara
  • Publication number: 20140165567
    Abstract: An engine-waste-heat utilization device includes a Rankine cycle with a heat exchanger that is configured to recover engine-waste-heat to refrigerant, an expander that is configured to generate power using the refrigerant coming out from the heat exchanger, a condenser that is configured to condense the refrigerant coming out from the expander and a refrigerant pump that is configured to supply the refrigerant coming out from the condenser to the heat exchanger by being driven by the expander, a power transmission mechanism (crank pulley, pump pulley, belt) that is configured to transmit surplus power to the engine when the expander has spare power even if the refrigerant pump is driven, a clutch that is configured to connect and disconnecting power transmission by the power transmission mechanism, and a case provided near a high-temperature part of the engine such that a shaft of the expander and that of the refrigerant pump are coaxially arranged, the clutch, the refrigerant pump and the expander are integr
    Type: Application
    Filed: August 6, 2012
    Publication date: June 19, 2014
    Applicants: SANDEN CORPORATION, NISSAN MOTOR CO., LTD.
    Inventors: Hiroyuki Nagai, Takayuki Ishikawa, Shinichiro Mizoguchi, Riyako Iwahashi, Shinji Nakamura
  • Publication number: 20140165562
    Abstract: An engine-waste-heat utilization device includes a Rankine cycle which includes a heat exchanger through which cooling water coming out from an engine flows to recover waste-heat of the engine to refrigerant, an expander which generates power using the refrigerant coming out from the heat exchanger, a condenser which condenses the refrigerant coming out from the expander and a refrigerant pump which supplies the refrigerant coming out from the condenser to the heat exchanger, and a cooling water passage in which the cooling water having a higher temperature flows when the Rankine cycle is operated than when the Rankine cycle is not operated.
    Type: Application
    Filed: August 6, 2012
    Publication date: June 19, 2014
    Applicant: NISSAN MOTOR CO., LTD.
    Inventors: Hiroyuki Nagai, Shinichiro Mizoguchi, Takayuki Ishikawa