Patents by Inventor Shinichiro Yamada

Shinichiro Yamada has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11955638
    Abstract: A sheet-shaped member is provided and includes a porous carbon material including a material obtained from carbonization of a raw material including rice husk, the raw material having a silicon content of at least 5 wt %, the raw material is heat treated before carbonization, and the raw material is treated by an alkali treatment after carbonization to reduce the silicon content, the porous carbon material having a specific surface area of at least 10 m2/g as measured by the nitrogen BET method, a pore volume of at least 0.1 cm3/g as measured by the BJH method and MP method, and an R value of 1.
    Type: Grant
    Filed: December 29, 2022
    Date of Patent: April 9, 2024
    Assignee: Sony Corporation
    Inventors: Seiichiro Tabata, Shinichiro Yamada, Masayoshi Kanno, Tsutomu Noguchi, Takeshi Horie
  • Publication number: 20230391722
    Abstract: A method includes producing a diiminopyrrole compound by mixing an aromatic 3-pyrroline compound, an iodinating agent, and ammonia based on Chemical Formula 1 below, in which ring A is an aromatic group:
    Type: Application
    Filed: October 12, 2021
    Publication date: December 7, 2023
    Applicant: GODO SHIGEN CO., LTD.
    Inventors: Michihiko MIYAMOTO, Hiroto KOMATSU, Shinichiro YAMADA, Takuya JITSUKAWA, Koichi TAGAMI, Takahiro YAMAMOTO, Hideo TOGO
  • Patent number: 11802059
    Abstract: A porous carbon material having a value of a specific surface area by a nitrogen BET method of 1×102 m2/g or more, a volume of fine pores by a BJH method of 0.3 cm3/g or more, and a particle size of 75 ?m or more, alternatively, a porous carbon material having a value of a specific surface area by a nitrogen BET method of 1×102 m2/g or more, a total of volumes of fine pores having a diameter of from 1×10?9 m to 5×10?7 m, obtained by a non-localized density functional theory method, of 1.0 cm3/g or more, and a particle size of 75 ?m or more.
    Type: Grant
    Filed: June 24, 2020
    Date of Patent: October 31, 2023
    Assignee: Sony Corporation
    Inventors: Shun Yamanoi, Hironori Iida, Machiko Minatoya, Seiichiro Tabata, Shinichiro Yamada
  • Patent number: 11707068
    Abstract: Disclosed herein is a fungicide, including a porous carbon material and a silver member adhered to the porous carbon material, wherein a value of a specific surface area based on a nitrogen BET, namely Brunauer, Emmett, and Teller method is equal to or larger than 10 m2/g, and a volume of a fine pore based on a BJH, namely Barrett, Joyner, and Halenda method and an MP, namely Micro Pore method is equal to or larger than 0.1 cm3/g.
    Type: Grant
    Filed: March 19, 2020
    Date of Patent: July 25, 2023
    Assignee: SONY CORPORATION
    Inventors: Hironori Iida, Shun Yamanoi, Machiko Minatoya, Seiichiro Tabata, Shinichiro Yamada
  • Patent number: 11697603
    Abstract: A filter medium of the present invention includes a porous carbon material having a value of a specific surface area by a nitrogen BET method of 1×102 m2/g or more, a volume of fine pores by a BJH method of 0.3 cm3/g or more, and a particle size of 75 ?m or more, alternatively, a porous carbon material having a value of a specific surface area by a nitrogen BET method of 1×102 m2/g or more, a total of volumes of fine pores having a diameter of from 1×10?9 m to 5×10?7 m, obtained by a non-localized density functional theory method, of 1.0 cm3/g or more, and a particle size of 75 ?m or more.
    Type: Grant
    Filed: February 9, 2012
    Date of Patent: July 11, 2023
    Assignee: Sony Corporation
    Inventors: Shun Yamanoi, Hironori Iida, Machiko Minatoya, Seiichiro Tabata, Shinichiro Yamada
  • Patent number: 11697106
    Abstract: A porous carbon material composite formed of a porous carbon material and a functional material and equipped with high functionality. The porous carbon material composite is formed of (A) a porous carbon material obtainable from a plant-derived material having a silicon (Si) content of 5 wt % or higher as a raw material; and (B) a functional material adhered on the porous carbon material, and has a specific surface area of 10 m2/g or greater as determined by the nitrogen BET method and a pore volume of 0.1 cm3/g or greater as determined by the BJH method and MP method.
    Type: Grant
    Filed: October 8, 2020
    Date of Patent: July 11, 2023
    Assignee: SONY CORPORATION
    Inventors: Hironori Iida, Seiichiro Tabata, Shinichiro Yamada, Tsutomu Noguchi, Shun Yamanoi
  • Publication number: 20230147545
    Abstract: A sheet-shaped member is provided and includes a porous carbon material including a material obtained from carbonization of a raw material including rice husk, the raw material having a silicon content of at least 5 wt %, the raw material is heat treated before carbonization, and the raw material is treated by an alkali treatment after carbonization to reduce the silicon content, the porous carbon material having a specific surface area of at least 10 m2/g as measured by the nitrogen BET method, a pore volume of at least 0.1 cm3/g as measured by the BJH method and MP method, and an R value of 1.
    Type: Application
    Filed: December 29, 2022
    Publication date: May 11, 2023
    Inventors: Seiichiro TABATA, Shinichiro YAMADA, Masayoshi KANNO, Tsutomu NOGUCHI, Takeshi HORIE
  • Patent number: 11545665
    Abstract: A carbon-polymer complex is provided and includes a porous carbon material and a binder, wherein the porous carbon material includes a material obtained from carbonization of a raw material including rice husk, the raw material having a silicon content of at least 5 wt %, the raw material is heat treated before carbonization, and the raw material is treated by an alkali treatment after carbonization to reduce the silicon content, the porous carbon material having a specific surface area of at least 10 m2/g as measured by the nitrogen BET method, a pore volume of at least 0.1 cm3/g as measured by the BJH method and MP method, and an R value of 1.5 or greater, wherein the porous carbon material includes mesopores having pore sizes from 2 nm to 50 nm and obtained from the alkali treatment of the raw material after carbonization, the porous carbon material further includes macropores and micropores.
    Type: Grant
    Filed: June 12, 2020
    Date of Patent: January 3, 2023
    Assignee: Sony Corporation
    Inventors: Seiichiro Tabata, Shinichiro Yamada, Masayoshi Kanno, Tsutomu Noguchi, Takeshi Horie
  • Patent number: 11539055
    Abstract: An air-metal secondary battery has an electrode including a porous carbon material, wherein the porous carbon material has a specific surface area of 280 m2/g or more, preferably 700 m2/g or more, more preferably 1,500 m2/g or more, as determined by a nitrogen BET method, and the air-metal secondary battery has an average charging voltage of 4.4 V or less, preferably 4.3 V or less, more preferably 4.1 V or less.
    Type: Grant
    Filed: March 7, 2014
    Date of Patent: December 27, 2022
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventors: Hironori Iida, Seiichiro Tabata, Shun Yamanoi, Shinichiro Yamada
  • Publication number: 20210347642
    Abstract: A porous carbon material wherein a particle diameter is 10 ?m or more but 1 cm or less; wherein a bulk specific gravity is 0.20 g/cm3 or more; and wherein a mesopore volume is 0.10 cm3/g or more.
    Type: Application
    Filed: July 20, 2021
    Publication date: November 11, 2021
    Inventors: Hirofumi TAKEKUMA, Shinichiro YAMADA, Kazuhiro KIMURA, Takuhiro ISHII, Katsuya TANBA
  • Publication number: 20210197549
    Abstract: An image forming apparatus includes a linehead and a control unit. The linehead of an image forming apparatus includes a common ink chamber, a plurality of nozzles, an individual ink flow path, an ink supply path, a first piezoelectric actuator, and a second piezoelectric actuator. One end of the individual ink flow path is connected to the nozzle. The ink supply path is connected to the individual ink flow path and the common ink chamber. When putting the nozzle into a drying prevention state, the control unit deforms the first piezoelectric actuator in a direction in which a capacity of the individual ink flow path increases, to thereby draw an interface of ink to inside the nozzle. Further, the control unit deforms the second piezoelectric actuator, to thereby close the ink supply path.
    Type: Application
    Filed: December 24, 2020
    Publication date: July 1, 2021
    Inventors: Kohei FURUKAWA, Shinichiro Yamada
  • Publication number: 20210023535
    Abstract: A porous carbon material composite formed of a porous carbon material and a functional material and equipped with high functionality. The porous carbon material composite is formed of (A) a porous carbon material obtainable from a plant-derived material having a silicon (Si) content of 5 wt % or higher as a raw material; and (B) a functional material adhered on the porous carbon material, and has a specific surface area of 10 m2/g or greater as determined by the nitrogen BET method and a pore volume of 0.1 cm3/g or greater as determined by the BJH method and MP method.
    Type: Application
    Filed: October 8, 2020
    Publication date: January 28, 2021
    Applicant: Sony Corporation
    Inventors: Hironori Iida, Seiichiro Tabata, Shinichiro Yamada, Tsutomu Noguchi, Shun Yamanoi
  • Publication number: 20200317537
    Abstract: A porous carbon material having a value of a specific surface area by a nitrogen BET method of 1×102 m2/g or more, a volume of fine pores by a BJH method of 0.3 cm3/g or more, and a particle size of 75 ?m or more, alternatively, a porous carbon material having a value of a specific surface area by a nitrogen BET method of 1×102 m2/g or more, a total of volumes of fine pores having a diameter of from 1×10?9 m to 5×10?7 m, obtained by a non-localized density functional theory method, of 1.0 cm3/g or more, and a particle size of 75 ?m or more.
    Type: Application
    Filed: June 24, 2020
    Publication date: October 8, 2020
    Inventors: Shun YAMANOI, Hironori IIDA, Machiko MINATOYA, Seiichiro TABATA, Shinichiro YAMADA
  • Publication number: 20200313187
    Abstract: A carbon-polymer complex is provided and includes a porous carbon material and a binder, wherein the porous carbon material includes a material obtained from carbonization of a raw material including rice husk, the raw material having a silicon content of at least 5 wt %, the raw material is heat treated before carbonization, and the raw material is treated by an alkali treatment after carbonization to reduce the silicon content, the porous carbon material having a specific surface area of at least 10 m2/g as measured by the nitrogen BET method, a pore volume of at least 0.1 cm3/g as measured by the BJH method and MP method, and an R value of 1.5 or greater, wherein the porous carbon material includes mesopores having pore sizes from 2 nm to 50 nm and obtained from the alkali treatment of the raw material after carbonization, the porous carbon material further includes macropores and micropores.
    Type: Application
    Filed: June 12, 2020
    Publication date: October 1, 2020
    Inventors: Seiichiro TABATA, Shinichiro YAMADA, Masayoshi KANNO, Tsutomu NOGUCHI, Takeshi HORIE
  • Publication number: 20200303738
    Abstract: A porous carbon material comprising a material obtained from carbonization of a raw material including one or both of seaweed stem and straw, the raw material having a silicon content of at least 5 wt %, the raw material is heat treated before carbonization, and the raw material is treated by an alkali treatment after carbonization to reduce the silicon content, the porous carbon material having a value of specific surface area of at least 10 m2/g as measured by the nitrogen BET method, a pore volume of at least 0.1 cm3/g as measured by the BJH method and MP method, and an R value of 1.5 or greater, wherein the porous carbon material includes mesopores having pore sizes from 2 nm to 50 nm and obtained from the alkali treatment of the raw material after carbonization, the porous carbon material further includes macropores and micropores.
    Type: Application
    Filed: June 5, 2020
    Publication date: September 24, 2020
    Inventors: Seiichiro TABATA, Shinichiro YAMADA, Masayoshi KANNO, Tsutomu NOGUCHI, Takeshi HORIE
  • Patent number: 10756346
    Abstract: A porous carbon material is provided. The porous carbon material having a value of specific surface area of at least 10 m2/g as measured by a nitrogen BET method, a pore volume of at least 0.1 cm3/g as measured by a BJH method and a MP method, and a R value of 1.5 or greater, wherein the R value is expressed as R=B/A, wherein A is an intensity at an intersection between a baseline of a diffraction peak of a (002) plane as obtained based on powdery X-ray diffractometry of the porous carbon material and a perpendicular line downwardly drawn from the diffraction peak of the (002) plane, and wherein B is an intensity of the diffraction peak of the (002) plane.
    Type: Grant
    Filed: January 27, 2017
    Date of Patent: August 25, 2020
    Assignee: Sony Corporation
    Inventors: Seiichiro Tabata, Shinichiro Yamada, Masayoshi Kanno, Tsutomu Noguchi, Takeshi Horie
  • Publication number: 20200229441
    Abstract: Disclosed herein is a fungicide, including: a porous carbon material; and a silver member adhered to the porous carbon material, wherein a value of a specific surface area based on a nitrogen BET, namely Brunauer, Emmett, and Teller method is equal to or larger than 10 m2/g, and a volume of a fine pore based on a BJH, namely Barrett, Joyner, and Halenda method and an MP, namely Micro Pore method is equal to or larger than 0.1 cm3/g.
    Type: Application
    Filed: March 19, 2020
    Publication date: July 23, 2020
    Inventors: HIRONORI IIDA, SHUN YAMANOI, MACHIKO MINATOYA, SEIICHIRO TABATA, SHINICHIRO YAMADA
  • Patent number: 10714750
    Abstract: By a process for producing a porous carbon material from a plant-derived material as a raw material, said process including carbonizing the plant-derived material at 800° C. to 1,400° C. and then applying a treatment with an acid or alkali, a porous carbon material having a value of specific surface area of at least 10 m2/g as measured by the nitrogen BET method, a silicon content of at most 1 wt % and a pore volume of at least 0.1 cm3/g is obtainable from a plant-derived material, which has a silicon content of at least 10 wt %, as a raw material. Also provided is a process for producing a porous carbon material equipped with excellent functionality so that the porous carbon material can be used, for example, as an anode material for batteries, an adsorbent, masks, adsorbing sheets, or carriers.
    Type: Grant
    Filed: April 4, 2008
    Date of Patent: July 14, 2020
    Assignee: Sony Corporation
    Inventors: Seiichiro Tabata, Shinichiro Yamada, Masayoshi Kanno, Tsutomu Noguchi, Takeshi Horie
  • Patent number: 10290875
    Abstract: An electrode material for a secondary cell includes a porous carbon material having an absolute value of a differential value of a mass using a temperature as a parameter exceeding 0 at 360° C. and being 0.016 or more at 290° C. provided by thermally analyzing a mixture of the porous carbon material and S8 sulfur at a mass ratio of 1:2.
    Type: Grant
    Filed: May 20, 2014
    Date of Patent: May 14, 2019
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventors: Shun Yamanoi, Seiichiro Tabata, Hironori Iida, Kenji Kishimoto, Yosuke Saito, Shinichiro Yamada, Kazumasa Takeshi, Koichiro Hinokuma
  • Patent number: 10226752
    Abstract: [Object] To provide an adsorbent, an adsorbent sheet, and a carbon/polymer composite for adsorbing a virus having further improved virus adsorption capability. [Solving Means] An adsorbent for adsorbing a virus according to the present invention has a specific surface area value as measured by the nitrogen BET method of 10 m2/g or more and a pore volume as measured by the BJH method of 0.1 cm3/g or more. An adsorbent sheet for adsorbing a virus according to the present invention includes a porous carbonaceous material having a specific surface area value as measured by the nitrogen BET method of 10 m2/g or more and a pore volume as measured by the BJH method of 0.1 cm3/g or more. A carbon/polymer composite for adsorbing a virus according to the present invention includes a porous carbonaceous material having a specific surface area value as measured by the nitrogen BET method of 10 m2/g or more and a pore volume as measured by the BJH method of 0.1 cm3/g or more; and a binder.
    Type: Grant
    Filed: August 21, 2017
    Date of Patent: March 12, 2019
    Assignee: Sony Corporation
    Inventors: Hironori Iida, Shun Yamanoi, Machiko Minatoya, Seiichiro Tabata, Shinichiro Yamada