Patents by Inventor Shinji Kambara

Shinji Kambara has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11964251
    Abstract: Provided is a fuel-reforming device comprising: an ammonia tank (4); a reformer (5) for reforming ammonia and generating high-concentration hydrogen gas having a hydrogen content of at least 99%; a mixing tank (7) for mixing ammonia and hydrogen for temporary storage; and a control means (10) for controlling the respective supply amounts of ammonia and high-concentration hydrogen gas that are supplied to the mixing tank (7). The control means (10) calculates the combustion rate coefficient C of mixed gas with respect to a reference fuel on the basis of equation (1). Equation (1): S0=SH×C+SA×(1?C). In equation (1), S0 is the combustion rate of the reference fuel, SH is the combustion rate of hydrogen, SA is the combustion rate of ammonia, and C is the combustion rate coefficient of mixed gas. In addition, on the basis of equation (2), the control means (10) determines the volume fractions of ammonia and hydrogen that are supplied to the mixing tank. Equation (2): C=1?exp(?A×MB).
    Type: Grant
    Filed: April 9, 2020
    Date of Patent: April 23, 2024
    Assignees: NATIONAL UNIVERSITY CORPORATION TOKAI NATIONAL HIGHER EDUCATION AND RESEARCH SYSTEM, SAWAFUJI ELECTRIC CO., LTD.
    Inventors: Shinji Kambara, Tomonori Miura, Yuya Tanaka, Tatsuya Ikeda
  • Patent number: 11472701
    Abstract: Provided are a hydrogen purification device and a hydrogen purification method whereby hydrogen having a high purity can be purified at a high yield from a starting gas. The hydrogen purification device comprises: a starting gas source that supplies a starting gas, said starting gas containing hydrogen molecules and/or a hydride, to a discharge space; a plasma reactor that defines at least a part of the discharge space; a hydrogen flow channel that is connected to the discharge space; and leads out purified hydrogen from the starting gas source; a hydrogen separation membrane that partitions the discharge space from the hydrogen flow channel defines at least a part of the discharge space by one surface thereof and defines at least a part of the hydrogen flow channel by the other surface thereof; an electrode that is positioned outside the discharge space; and an adsorbent that is filled in the discharge space and adsorbs the starting gas.
    Type: Grant
    Filed: January 9, 2019
    Date of Patent: October 18, 2022
    Assignees: National University Corporation Tokai National Higher Education and Research System, SAWAFUJI ELECTRIC CO., LTD.
    Inventors: Shinji Kambara, Tomonori Miura, Yukio Hayakawa
  • Publication number: 20220193629
    Abstract: Provided is a fuel-reforming device comprising: an ammonia tank (4); a reformer (5) for reforming ammonia and generating high-concentration hydrogen gas having a hydrogen content of at least 99%; a mixing tank (7) for mixing ammonia and hydrogen for temporary storage; and a control means (10) for controlling the respective supply amounts of ammonia and high-concentration hydrogen gas that are supplied to the mixing tank (7). The control means (10) calculates the combustion rate coefficient C of mixed gas with respect to a reference fuel on the basis of equation (1). Equation (1): S0=SH×C+SA×(1?C). In equation (1), S0 is the combustion rate of the reference fuel, SH is the combustion rate of hydrogen, SA is the combustion rate of ammonia, and C is the combustion rate coefficient of mixed gas. In addition, on the basis of equation (2), the control means (10) determines the volume fractions of ammonia and hydrogen that are supplied to the mixing tank. Equation (2): C=1?exp(?A×MB).
    Type: Application
    Filed: April 9, 2020
    Publication date: June 23, 2022
    Inventors: Shinji Kambara, Tomonori Miura, Yuya Tanaka, Tatsuya Ikeda
  • Publication number: 20210238034
    Abstract: Provided are a hydrogen recycle system and a hydrogen recycle method, whereby hydrogen can be purified to high purity at high yield from a gas, said gas being exhausted from a nitride compound production device, and recycled. The hydrogen recycle system comprises an exhaust gas supply path supplying a gas exhausted from a nitride compound production device, a hydrogen recycle means and a hydrogen supply path. The hydrogen recycle means of the hydrogen recycle system is characterized by comprising: a plasma reaction vessel that defines at least a part of a discharge space; a hydrogen separation membrane that divides the discharge space from a hydrogen flow path communicated with the hydrogen supply path, defines at least a part of the discharge space by one surface thereof and also defines at least a part of the hydrogen flow path by the other surface thereof; an electrode that is disposed outside the discharge space; and an adsorbent that is filled in the discharge space and adsorbs the supplied exhaust gas.
    Type: Application
    Filed: May 17, 2019
    Publication date: August 5, 2021
    Inventors: Shinji Kambara, Yukio Hayakawa, Tomonori Miura, Tatsuya Ikeda
  • Publication number: 20200385267
    Abstract: Provided are a hydrogen purification device and a hydrogen purification method whereby hydrogen having a high purity can be purified at a high yield from a starting gas. The hydrogen purification device comprises: a starting gas source that supplies a starting gas, said starting gas containing hydrogen molecules and/or a hydride, to a discharge space; a plasma reactor that defines at least a part of the discharge space; a hydrogen flow channel that is connected to the discharge space; and leads out purified hydrogen from the starting gas source; a hydrogen separation membrane that partitions the discharge space from the hydrogen flow channel defines at least a part of the discharge space by one surface thereof and defines at least a part of the hydrogen flow channel by the other surface thereof; an electrode that is positioned outside the discharge space; and an adsorbent that is filled in the discharge space and adsorbs the starting gas.
    Type: Application
    Filed: January 9, 2019
    Publication date: December 10, 2020
    Inventors: Shinji Kambara, Tomonori Miura, Yukio Hayakawa
  • Patent number: 10647571
    Abstract: Provided is a hydrogen generating apparatus adaptable to fluctuating hydrogen demand, particularly by enabling large-scale hydrogen production, generating pure hydrogen at a high yield. The hydrogen generating apparatus 1 generates hydrogen gas from a source gas by decomposing the source gas through catalysis and transforming it into plasma through electric discharge. The hydrogen generating apparatus 1 includes a dielectric body 2 defining a source gas flow channel 13, a catalyst 10 that decomposes at least part of the source gas in the source gas flow channel 13 to generate hydrogen gas, an electrode 3 contacting the dielectric body 2, a hydrogen separation membrane 5 facing the electrode 3 across the dielectric body 2, a hydrogen flow channel 18 guiding hydrogen separated by the hydrogen separation membrane 5, and a high-voltage power supply 6 supplying power to cause electric discharge between the hydrogen separation membrane 5 and the electrode 3.
    Type: Grant
    Filed: March 27, 2018
    Date of Patent: May 12, 2020
    Assignees: Gifu University, Sawafuji Electric Co., Ltd.
    Inventors: Shinji Kambara, Tomonori Miura, Tatsuya Ikeda
  • Patent number: 10577241
    Abstract: Provided is a hydrogen generating apparatus adaptable to fluctuating hydrogen demand, particularly by enabling large-scale hydrogen production, generating pure hydrogen at a high yield. The hydrogen generating apparatus 1 includes a tabular dielectric body 2 having a first surface 11 with a source gas flow channel 13 formed as a recess and a second surface 12 approximately parallel to the first surface 11, a grounding electrode 3, a hydrogen flow channel plate 4 with a hydrogen flow channel 18 and a hydrogen outlet 19, being arranged on a first surface 11 side of dielectric body 2, a hydrogen separation membrane 5 between source gas flow channel 13 and hydrogen flow channel 18, and a high-voltage power supply 6 that causes electric discharge in source gas flow channel 13 between hydrogen separation membrane 5 and grounding electrode 3. Hydrogen separation membrane 5 transmits hydrogen generated by electric discharge in source gas flow channel 13 into hydrogen flow channel 18.
    Type: Grant
    Filed: January 19, 2018
    Date of Patent: March 3, 2020
    Assignees: Gifu University, Sawafuji Electric Co., Ltd.
    Inventors: Shinji Kambara, Tomonori Miura
  • Publication number: 20190334188
    Abstract: A compact fuel battery system is provided that has an integrated hydrogen generator. This fuel battery system 1 is provided with a hydrogen generator 10 and a fuel battery cell 20. The hydrogen generator 10 is provided with a plate-shape dielectric 2 having a raw material gas flow path surface 11 in which a raw material gas flow path 13 is formed. An electrode 3 faces the back surface 12 of the dielectric 2. A hydrogen separation membrane 5, which has a first surface 18 and the second surface 19, closes an opening of the raw material gas flow path 13. Furthermore, the hydrogen generator 10 is provided with a high-voltage power supply 6 which generates electric discharge between the hydrogen separation membrane 5 and the electrode 3. The fuel battery system is characterized in that the second surface 19 of the hydrogen separation membrane 5 of the hydrogen generator is arranged facing the fuel electrode 21 of the fuel battery cell 20.
    Type: Application
    Filed: January 19, 2018
    Publication date: October 31, 2019
    Applicants: GIFU UNIVERSITY, SAWAFUJI ELECTRIC CO., LTD.
    Inventors: Shinji Kambara, Tomonori Miura
  • Publication number: 20190322526
    Abstract: Provided is a hydrogen generating apparatus adaptable to fluctuating hydrogen demand, particularly by enabling large-scale hydrogen production, generating pure hydrogen at a high yield. The hydrogen generating apparatus 1 generates hydrogen gas from a source gas by decomposing the source gas through catalysis and transforming it into plasma through electric discharge. The hydrogen generating apparatus 1 includes a dielectric body 2 defining a source gas flow channel 13, a catalyst 10 that decomposes at least part of the source gas in the source gas flow channel 13 to generate hydrogen gas, an electrode 3 contacting the dielectric body 2, a hydrogen separation membrane 5 facing the electrode 3 across the dielectric body 2, a hydrogen flow channel 18 guiding hydrogen separated by the hydrogen separation membrane 5, and a high-voltage power supply 6 supplying power to cause electric discharge between the hydrogen separation membrane 5 and the electrode 3.
    Type: Application
    Filed: March 27, 2018
    Publication date: October 24, 2019
    Applicants: Gifu University, Sawafuji Electric Co., Ltd.
    Inventors: Shinji KAMBARA, Tomonori MIURA, Tatsuya IKEDA
  • Patent number: 10377628
    Abstract: An energy carrier system is provided that produces ammonia with high efficiency and that further produces hydrogen as final product and uses the hydrogen as energy. An energy storage transportation method is further provided that is carried out by using energy carrier system. The energy carrier system includes nitric acid production device, an ammonia production device, and hydrogen production device. The nitric acid production device includes a photo-reactor, a gas supply unit that supplies photo-reactor with gas to be treated containing a nitrogen oxide, water, and oxygen, and light source disposed in the photo-reactor. The light source radiates light including ultraviolet of a wavelength shorter than 175 nm. The energy storage transportation method includes nitric acid production step of producing nitric acid from a nitrogen oxide, ammonia production step of producing ammonia through reduction of nitric acid, and hydrogen production step of producing hydrogen through decomposition of the ammonia.
    Type: Grant
    Filed: January 28, 2016
    Date of Patent: August 13, 2019
    Assignees: SAWAFUJI ELECTRIC CO., LTD., GIFU UNIVERSITY
    Inventors: Shinji Kambara, Nobuyuki Hishinuma, Tomonori Miura
  • Publication number: 20190135621
    Abstract: Provided is a hydrogen generating apparatus adaptable to fluctuating hydrogen demand, particularly by enabling large-scale hydrogen production, generating pure hydrogen at a high yield. The hydrogen generating apparatus 1 includes a tabular dielectric body 2 having a first surface 11 with a source gas flow channel 13 formed as a recess and a second surface 12 approximately parallel to the first surface 11, a grounding electrode 3, a hydrogen flow channel plate 4 with a hydrogen flow channel 18 and a hydrogen outlet 19, being arranged on a first surface 11 side of dielectric body 2, a hydrogen separation membrane 5 between source gas flow channel 13 and hydrogen flow channel 18, and a high-voltage power supply 6 that causes electric discharge in source gas flow channel 13 between hydrogen separation membrane 5 and grounding electrode 3. Hydrogen separation membrane 5 transmits hydrogen generated by electric discharge in source gas flow channel 13 into hydrogen flow channel 18.
    Type: Application
    Filed: January 19, 2018
    Publication date: May 9, 2019
    Inventors: Shinji Kambara, Tomonori Miura
  • Patent number: 10173202
    Abstract: A catalyst is provided which is used for continuously synthesizing ammonia using a gas containing hydrogen and nitrogen as a raw material, wherein a transition metal which exhibits catalytic activity is supported by a support, and the support is a two-dimensional electride or a precursor thereof. The two-dimensional electride or the precursor thereof is a metal nitride represented by MxNyHz (M represents one or two or more of Group II metals selected from the group consisting of Mg, Ca, Sr and Ba, and x, y and z are in ranges of 1?x?11, 1?y?8, and 0?z?4 respectively, in which x is an integer, and y and z are not limited to an integer) or M3N2 (M is the same as above), or a metal carbide selected from the group consisting of Y2C, Sc2C, Gd2C, Tb2C, Dy2C, Ho2C and Er2C.
    Type: Grant
    Filed: February 12, 2015
    Date of Patent: January 8, 2019
    Assignees: JAPAN SCIENCE AND TECHNOLOGY AGENCY, TOKYO INSTITUTE OF TECHNOLOGY
    Inventors: Hideo Hosono, Michikazu Hara, Masaaki Kitano, Toshiharu Yokoyama, Yasunori Inoue, Shinji Kambara
  • Patent number: 10118162
    Abstract: A catalyst is provided which is used for continuously synthesizing ammonia using a gas containing hydrogen and nitrogen as a raw material, wherein a transition metal which exhibits catalytic activity is supported by a support, and the support is a two-dimensional electride or a precursor thereof. The two-dimensional electride or the precursor thereof is a metal nitride represented by MxNyHz (M represents one or two or more of Group II metals selected from the group consisting of Mg, Ca, Sr and Ba, and x, y and z are in ranges of 1?x?11, 1?y?8, and 0?z?4 respectively, in which x is an integer, and y and z are not limited to an integer) or M3N2 (M is the same as above), or a metal carbide selected from the group consisting of Y2C, Sc2C, Gd2C, Tb2C, Dy2C, Ho2C and Er2C.
    Type: Grant
    Filed: February 12, 2015
    Date of Patent: November 6, 2018
    Assignees: JAPAN SCIENCE AND TECHNOLOGY AGENCY, TOKYO INSTITUTE OF TECHNOLOGY
    Inventors: Hideo Hosono, Michikazu Hara, Masaaki Kitano, Toshiharu Yokoyama, Yasunori Inoue, Shinji Kambara
  • Patent number: 10065170
    Abstract: To provide a hydrogen generating apparatus that efficiently generates hydrogen from ammonia, and a fuel cell system that generates power using the efficiently generated hydrogen. [Solution] A hydrogen generating apparatus (1) is provided with a plasma reactor (3), a high-voltage electrode (5), a grounding electrode (7), and a gas supply means (15) that supplies a gas containing ammonia to the plasma reactor. The high-voltage electrode (5) is configured with a hydrogen separation membrane (12) included therein. Under the conditions of room temperature and atmospheric pressure, the hydrogen separation membrane (12) of the high-voltage electrode (5) discharges electricity between the grounding electrode (7) and the hydrogen separation membrane with power supplied from a high-voltage pulse power supply (2), and hydrogen is generated by bringing into the plasma state the ammonia contained in the gas thus supplied.
    Type: Grant
    Filed: October 1, 2013
    Date of Patent: September 4, 2018
    Assignees: GIFU UNIVERSITY, SAWAFUJI ELECTRIC CO., LTD., ACTREE CORPORATION
    Inventors: Shinji Kambara, Tomonori Miura, Megumi Masui
  • Patent number: 9919270
    Abstract: A denitration device and a denitration method in which denitration is performed efficiently and in a stable manner in a lower-reaction-temperature region without using a catalyst. The denitration device is provided with a combustion chamber, a denitration agent feed means for feeding a denitration agent into the combustion chamber, an exhaust pipe, and an OH-radical-generating substance feed means for feeding an OH radical-generating substance into the exhaust pipe. The denitration agent feed means feeds a denitration agent into the exhaust gas of the combustion chamber to perform a first denitration reaction step, and the OH-radical-generating substance feed means feeds the OH-radical-generating substance into the exhaust gas in the exhaust pipe to perform a second denitration reaction step.
    Type: Grant
    Filed: October 30, 2014
    Date of Patent: March 20, 2018
    Assignees: GIFU UNIVERSITY, SAWAFUJI ELECTRIC CO., LTD., ACTREE CORPORATION
    Inventors: Shinji Kambara, Tomonori Miura, Tatsuya Ikeda, Sho Arai, Megumi Masui
  • Publication number: 20180009661
    Abstract: An energy carrier system is provided that produces ammonia with high efficiency and that further produces hydrogen as final product and uses the hydrogen as energy. An energy storage transportation method is further provided that is carried out by using energy carrier system. The energy carrier system includes nitric acid production device, an ammonia production device, and hydrogen production device. The nitric acid production device includes a photo-reactor, a gas supply unit that supplies photo-reactor with gas to be treated containing a nitrogen oxide, water, and oxygen, and light source disposed in the photo-reactor. The light source radiates light including ultraviolet of a wavelength shorter than 175 nm. The energy storage transportation method includes nitric acid production step of producing nitric acid from a nitrogen oxide, ammonia production step of producing ammonia through reduction of nitric acid, and hydrogen production step of producing hydrogen through decomposition of the ammonia.
    Type: Application
    Filed: January 28, 2016
    Publication date: January 11, 2018
    Applicants: SAWAFUJI ELECTRIC CO., LTD., GIFU UNIVERSITY
    Inventors: Shinji KAMBARA, Nibuyuki HISHINUMA, Tomonori MIURA
  • Publication number: 20160361712
    Abstract: A catalyst is provided which is used for continuously synthesizing ammonia using a gas containing hydrogen and nitrogen as a raw material, wherein a transition metal which exhibits catalytic activity is supported by a support, and the support is a two-dimensional electride or a precursor thereof. The two-dimensional electride or the precursor thereof is a metal nitride represented by MxNyHz (M represents one or two or more of Group II metals selected from the group consisting of Mg, Ca, Sr and Ba, and x, y and z are in ranges of 1?x?11, 1?y?8, and 0?z?4 respectively, in which x is an integer, and y and z are not limited to an integer) or M3N2 (M is the same as above), or a metal carbide selected from the group consisting of Y2C, Sc2C, Gd2C, Tb2C, Dy2C, Ho2C and Er2C.
    Type: Application
    Filed: February 12, 2015
    Publication date: December 15, 2016
    Applicants: JAPAN SCIENCE AND TECHNOLOGY AGENCY, TOKYO INSTITUTE OF TECHNOLOGY
    Inventors: Hideo HOSONO, Michikazu HARA, Masaaki KITANO, Toshiharu YOKOYAMA, Yasunori INOUE, Shinji KAMBARA
  • Publication number: 20160279570
    Abstract: To apply a denitration device and a denitration method in which denitration is performed efficiently and in a stable manner in a lower-reaction-temperature region without using a catalyst. The denitration device (100) is provided with a combustion chamber (1), a denitration agent feed means (11) for feeding a denitration agent into the combustion chamber (1), an exhaust pipe (2), and an OH-radical-generating substance feed means (21) for feeding an OH-radical-generating substance into the exhaust pipe (2). The denitration agent feed means (11) feeds a denitration agent into the exhaust gas of the combustion chamber to perform a first denitration reaction step, and the OH-radical-generating substance feed means (21) feeds the OH-radical-generating substance into the exhaust gas in the exhaust pipe (2) to perform a second denitration reaction step.
    Type: Application
    Filed: October 30, 2014
    Publication date: September 29, 2016
    Applicant: GIFU UNIVERSITY
    Inventors: Shinji Kambara, Tomonori Miura, Tatsuya Ikeda, Sho Arai, Megumi Masui
  • Publication number: 20150238922
    Abstract: To provide a hydrogen generating apparatus that efficiently generates hydrogen from ammonia, and a fuel cell system that generates power using the efficiently generated hydrogen. [Solution] A hydrogen generating apparatus (1) is provided with a plasma reactor (3), a high-voltage electrode (5), a grounding electrode (7), and a gas supply means (15) that supplies a gas containing ammonia to the plasma reactor. The high-voltage electrode (5) is configured with a hydrogen separation membrane (12) included therein. Under the conditions of room temperature and atmospheric pressure, the hydrogen separation membrane (12) of the high-voltage electrode (5) discharges electricity between the grounding electrode (7) and the hydrogen separation membrane with power supplied from a high-voltage pulse power supply (2), and hydrogen is generated by bringing into the plasma state the ammonia contained in the gas thus supplied.
    Type: Application
    Filed: October 1, 2013
    Publication date: August 27, 2015
    Inventors: Shinji Kambara, Tomonori Miura, Megumi Masui