Patents by Inventor Shinji Santo

Shinji Santo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9041269
    Abstract: There is provided a motor including a rotor and a stator arranged outside the rotor in the radial direction. The rotor includes a rotor core, a plurality of magnets arranged at equal intervals in the circumferential direction of the rotor core and functioning as one magnetic pole, and salient poles integrated with the rotor core, each arranged between adjacent magnets and at a distance from the magnets. The salient poles function as the other magnetic pole. A stator has a stator core having a plurality of teeth extending in the radial direction of the stator and arranged at equal intervals in the circumferential direction, and multi-phase coils attached to the teeth.
    Type: Grant
    Filed: June 14, 2011
    Date of Patent: May 26, 2015
    Assignee: Asmo Co., Ltd.
    Inventors: Shigemasa Kato, Seiya Yokoyama, Yoji Yamada, Keisuke Koide, Yoshiaki Takemoto, Shinji Santo
  • Patent number: 8653771
    Abstract: A controller for use with a motor including a stator, around which three-phase coils are wound, and a rotor, which includes a magnet functioning as a first magnetic pole and a salient pole of a core functioning as a second magnetic pole. The controller supplies the three-phase coils with excitation currents having a predetermined phase difference from one another to drive and rotate the rotor. The controller includes a current adjustment unit that adjusts a fundamental wave current using high-order currents for third order and ninth order components in a q-axis to reduce torque ripple. The excitation current is generated based on the fundamental wave current adjusted by the current adjustment unit.
    Type: Grant
    Filed: February 16, 2011
    Date of Patent: February 18, 2014
    Assignee: ASMO Co., Ltd.
    Inventors: Shinji Santo, Seiya Yokoyama, Yoji Yamada, Yoshiaki Takemoto, Shigemasa Kato, Kenta Goto
  • Patent number: 8536749
    Abstract: A motor having a rotor and a stator is disclosed. The rotor is a consequent-pole rotor having a rotor core, a plurality of magnets, and a plurality of salient poles. The stator includes a stator core and multiphase coils. Each coil is wound about the teeth by distributed winding, in such a manner as to wind two or more consecutive teeth in single winding. The opening degree each of salient pole opposed to the distal ends of the teeth is set greater than or equal to twice the opening angle of the distal end of each tooth.
    Type: Grant
    Filed: October 5, 2010
    Date of Patent: September 17, 2013
    Assignee: ASMO Co., Ltd.
    Inventors: Keisuke Koide, Seiya Yokoyama, Shigemasa Kato, Yoji Yamada, Yoshiaki Takemoto, Shinji Santo
  • Patent number: 8405342
    Abstract: A motor including a stator, a rotor, and a current supply unit. The stator includes a stator core, which has a plurality of teeth, and a plurality of coils, which are wound around the teeth. The rotor includes a plurality of magnets, which function as first magnetic poles, and salient poles, which function as second magnetic poles. Each of the salient poles is arranged between adjacent magnets spaced apart by a clearance from the magnets. When P represents the number of poles in the rotor and S represents the number of coils, a ratio P/S of the pole number P and the coil number S is represented by (4n?2)/3m (where n and m are integers that are greater than or equal to 2). The plurality of coils includes a plurality of coil groups including coils for three phases. The current supply unit executes a different current control for each coil groups.
    Type: Grant
    Filed: September 29, 2010
    Date of Patent: March 26, 2013
    Assignee: Asmo Co., Ltd.
    Inventors: Yoji Yamada, Shinji Santo, Seiya Yokoyama, Yoko Tateishi, Yoshiaki Takemoto, Shigemasa Kato
  • Patent number: 8324779
    Abstract: A motor having a rotor and a stator is disclosed. The rotor is a consequent-pole rotor having a rotor core, a plurality of magnets, and a plurality of salient poles. The stator includes a plurality of teeth. A first auxiliary groove is formed in a surface of each salient pole that is opposed to the teeth. Each first auxiliary groove has first and second side surfaces facing each other in the circumferential direction. The first side surface is closer to a circumferential center of the salient pole than the second side surface. When the angle from the circumferential center line to the first side surface of each salient pole about the axis of the rotor is represented by KC1, the opening angle between the circumferential ends of the distal end of each tooth about the axis is represented by KA, and the opening angle between the circumferential ends of each salient pole about the axis is represented by KB, the following expression is satisfied: KC1=KA?KB/2.
    Type: Grant
    Filed: October 5, 2010
    Date of Patent: December 4, 2012
    Assignee: ASMO Co., Ltd.
    Inventors: Shigemasa Kato, Seiya Yokoyama, Yoji Yamada, Yoshiaki Takemoto, Keisuke Koide, Shinji Santo
  • Patent number: 8319386
    Abstract: A motor having a rotor and a stator is disclosed. A motor having a rotor and as stator is disclosed. The rotor is a consequent-pole rotor having a rotor core, a plurality of magnets, and a plurality of salient poles. The stator includes a plurality of teeth. The stator is arranged to be opposite to the rotor with a gap along the radial direction. The gap between the stator and the rotor is set to satisfy an expression 1<B/A, where A represents the shortest gap distance between the stator and the magnets, and B represents the shortest gap distance between the stator and the salient poles.
    Type: Grant
    Filed: October 5, 2010
    Date of Patent: November 27, 2012
    Assignee: ASMO Co., Ltd.
    Inventors: Yoji Yamada, Seiya Yokoyama, Yoshiaki Takemoto, Shigemasa Kato, Keisuke Koide, Shinji Santo
  • Publication number: 20120091845
    Abstract: A brushless motor includes a rotor and a stator. The rotor is provided with a rotor core including a plurality of magnet poles and a plurality of core poles. A void is formed at a boundary between each core pole and an adjacent magnet pole in the circumferential direction. Each magnet pole includes a peripheral core portion located closer to the stator than the magnet in the radial direction of the rotor. The void formed in at least one of two circumferential sides of each magnet pole includes an extended void region that extends into the peripheral core portion toward a middle point of the magnet pole in the circumferential direction.
    Type: Application
    Filed: October 14, 2011
    Publication date: April 19, 2012
    Applicant: ASMO CO, LTD.
    Inventors: Yoshiaki TAKEMOTO, Shinji SANTO, Kenta GOTO, Shigemasa KATO
  • Publication number: 20110309707
    Abstract: There is provided a motor including a rotor and a stator arranged outside the rotor in the radial direction. The rotor includes a rotor core, a plurality of magnets arranged at equal intervals in the circumferential direction of the rotor core and functioning as one magnetic pole, and salient poles integrated with the rotor core, each arranged between adjacent magnets and at a distance from the magnets. The salient poles function as the other magnetic pole. A stator has a stator core having a plurality of teeth extending in the radial direction of the stator and arranged at equal intervals in the circumferential direction, and multi-phase coils attached to the teeth. The plurality of salient poles are arranged to have center portions arranged at equal intervals in the circumferential direction, and each have an outer surface extending in the circumferential direction in a range of a predetermined opening angle having an axis of the rotor as a center.
    Type: Application
    Filed: June 14, 2011
    Publication date: December 22, 2011
    Applicant: Asmo Co., Ltd.
    Inventors: Shigemasa Kato, Seiya Yokoyama, Yoji Yamada, Keisuke Koide, Yoshiaki Takemoto, Shinji Santo
  • Publication number: 20110204833
    Abstract: A controller for use with a motor including a stator, around which three-phase coils are wound, and a rotor, which includes a magnet functioning as a first magnetic pole and a salient pole of a core functioning as a second magnetic pole. The controller supplies the three-phase coils with excitation currents having a predetermined phase difference from one another to drive and rotate the rotor. The controller includes a current adjustment unit that adjusts a fundamental wave current using high-order currents for third order and ninth order components in a q-axis to reduce torque ripple. The excitation current is generated based on the fundamental wave current adjusted by the current adjustment unit.
    Type: Application
    Filed: February 16, 2011
    Publication date: August 25, 2011
    Applicant: ASMO CO., LTD
    Inventors: Shinji SANTO, Seiya YOKOYAMA, Yoji YAMADA, Yoshiaki TAKEMOTO, Shigemasa KATO, Kenta GOTO
  • Publication number: 20110193440
    Abstract: A motor having a rotor and a stator is disclosed. A motor having a rotor and as stator is disclosed. The rotor is a consequent-pole rotor having a rotor core, a plurality of magnets, and a plurality of salient poles. The stator includes a plurality of teeth. The stator is arranged to be opposite to the rotor with a gap along the radial direction. The gap between the stator and the rotor is set to satisfy an expression 1<B/A, where A represents the shortest gap distance between the stator and the magnets, and B represents the shortest gap distance between the stator and the salient poles.
    Type: Application
    Filed: October 5, 2010
    Publication date: August 11, 2011
    Applicant: ASMO CO., LTD.
    Inventors: YOJI YAMADA, SEIYA YOKOYAMA, YOSHIAKI TAKEMOTO, SHIGEMASA KATO, KEISUKE KOIDE, SHINJI SANTO
  • Publication number: 20110181230
    Abstract: A motor including a stator, a rotor, and a current supply unit. The stator includes a stator core, which has a plurality of teeth, and a plurality of coils, which are wound around the teeth. The rotor includes a plurality of magnets, which function as first magnetic poles, and salient poles, which function as second magnetic poles. Each of the salient poles is arranged between adjacent magnets spaced apart by a clearance from the magnets. When P represents the number of poles in the rotor and S represents the number of coils, a ratio P/S of the pole number P and the coil number S is represented by (4n?2)/3m (where n and m are integers that are greater than or equal to 2). The plurality of coils includes a plurality of coil groups including coils for three phases. The current supply unit executes a different current control for each coil groups.
    Type: Application
    Filed: September 29, 2010
    Publication date: July 28, 2011
    Applicant: ASMO CO., LTD.
    Inventors: Yoji Yamada, Shinji Santo, Seiya Yokoyama, Yoko Tateishi, Yoshiaki Takemoto, Shigemasa Kato
  • Publication number: 20110148240
    Abstract: A motor having a rotor and a stator is disclosed. The rotor is a consequent-pole rotor having a rotor core, a plurality of magnets, and a plurality of salient poles. The stator includes a stator core and multiphase coils. Each coil is wound about the teeth by distributed winding, in such a manner as to wind two or more consecutive teeth in single winding. The opening degree each of salient pole opposed to the distal ends of the teeth is set greater than or equal to twice the opening angle of the distal end of each tooth.
    Type: Application
    Filed: October 5, 2010
    Publication date: June 23, 2011
    Applicant: ASMO CO., LTD.
    Inventors: Keisuke Koide, Seiya Yokoyama, Shigemasa Kato, Yoji Yamada, Yoshiaki Takemoto, Shinji Santo
  • Publication number: 20110140562
    Abstract: A motor having a rotor and a stator is disclosed. The rotor is a consequent-pole rotor having a rotor core, a plurality of magnets, and a plurality of salient poles. The stator includes a plurality of teeth. A first auxiliary groove is formed in a surface of each salient pole that is opposed to the teeth. Each first auxiliary groove has first and second side surfaces facing each other in the circumferential direction. The first side surface is closer to a circumferential center of the salient pole than the second side surface. When the angle from the circumferential center line to the first side surface of each salient pole about the axis of the rotor is represented by KC1, the opening angle between the circumferential ends of the distal end of each tooth about the axis is represented by KA, and the opening angle between the circumferential ends of each salient pole about the axis is represented by KB, the following expression is satisfied: KC1=KA?KB/2.
    Type: Application
    Filed: October 5, 2010
    Publication date: June 16, 2011
    Applicant: ASMO CO., LTD.
    Inventors: Shigemasa Kato, Seiya Yokoyama, Yoji Yamada, Yoshiaki Takemoto, Keisuke Koide, Shinji Santo
  • Patent number: 7888836
    Abstract: A direct current motor including a rotor, a stator, a brush holder, and a brush. The rotor includes a core, a plurality of commutator segments, and a plurality of segment coils. The core has a plurality of teeth arranged along a circumferential direction of the rotor. A slot is formed between adjacent ones of the teeth in the circumferential direction. The plurality of commutator segments are arranged along the circumferential direction of the rotor inward from the plurality of teeth in the radial direction of the rotor. Each segment coil includes a plurality of segment conductors electrically connected to each other. The plurality of segment conductors in each segment coil extends through the slots along the axial direction of the rotor.
    Type: Grant
    Filed: April 11, 2008
    Date of Patent: February 15, 2011
    Assignee: Asmo Co., Ltd.
    Inventor: Shinji Santo
  • Patent number: 7772739
    Abstract: A commutator has a tabular holding portion defining a thickness direction. A plurality of segments are arranged in one end in the thickness direction of the holding portion in a radial pattern. Each of the segments has a slidable contact surface which is perpendicular to the thickness direction. A feeding brush is brought into slidable contact with the slidable contact surface. A tabular short-circuit unit short-circuits the segments to be set to the same electric potential with each other. The short-circuit unit is arranged parallel to the slidable contact surface. Accordingly, it is possible to enlarge a cross-sectional area which is perpendicular to a current passing direction of the coupling portion while suppressing an enlargement of a dimension in the axial direction of the commutator.
    Type: Grant
    Filed: December 27, 2006
    Date of Patent: August 10, 2010
    Assignee: ASMO Co., Ltd
    Inventors: Yoshiki Nakano, Masayuki Kuwano, Shinji Santo, Toshio Yamamoto
  • Patent number: 7605516
    Abstract: A commutator connected to armature coils includes circumferentially arranged segments, short-circuit conductors, and a surge absorbing element. The number of the segments is a multiple of the number of the armature coils. The segments include a plurality of pairs of segments. The segments in each pair are adjacent to each other in the circumferential direction. Each segment in each pair is connected to one of the ends of corresponding one of the armature coils. The number of the short-circuit conductors is the same as the number of the armature coils. Each short-circuit conductor short-circuits segments that are at the same potential to each other. Each short-circuit conductor is connected, either directly or via corresponding one of the segments, to the surge absorbing element, so that the surge absorbing element is electrically interposed between the ends of each armature coil.
    Type: Grant
    Filed: October 30, 2006
    Date of Patent: October 20, 2009
    Assignee: Asmo Co., Ltd.
    Inventors: Shinji Santo, Masayuki Kuwano, Toshio Yamamoto, Yoshiki Nakano
  • Patent number: 7569959
    Abstract: A motor has a field body having a number of field poles and an armature body having a number of coils which is placed outside of the above described field body in the radial direction. A commutator secured to the armature body has a number of segments to which the coils are respectively connected. The motor has a power supplying part for supplying a current to the coils and a brush holder which is secured to the field body. The brush holder contains an anode side brush device which makes contact with and slides against the commutator and the power supplying part and a cathode side brush device which makes contact with and slides against the commutator and the power supplying part. Accordingly, the efficiency of use of the coils can be increased.
    Type: Grant
    Filed: August 31, 2005
    Date of Patent: August 4, 2009
    Assignee: ASMO Co., Ltd.
    Inventors: Masayuki Kuwano, Shinji Santo, Keiichi Uemura, Toshio Yamamoto
  • Publication number: 20080258574
    Abstract: A direct current motor including a rotor, a stator, a brush holder, and a brush. The rotor includes a core, a plurality of commutator segments, and a plurality of segment coils. The core has a plurality of teeth arranged along a circumferential direction of the rotor. A slot is formed between adjacent ones of the teeth in the circumferential direction. The plurality of commutator segments are arranged along the circumferential direction of the rotor inward from the plurality of teeth in the radial direction of the rotor. Each segment coil includes a plurality of segment conductors electrically connected to each other. The plurality of segment conductors in each segment coil extends through the slots along the axial direction of the rotor.
    Type: Application
    Filed: April 11, 2008
    Publication date: October 23, 2008
    Applicant: ASMO CO., LTD.
    Inventor: Shinji Santo
  • Publication number: 20080122303
    Abstract: A direct-current motor includes a stator having a magnetic field system, a rotor disposed around the stator, a commutator which rotates together with the rotor, and power supply brushes which are urged in the axial direction by urging members so as to come into contact with the sliding contact surfaces. The rotor includes an armature core around which armature coils are wound, and a rotary shaft which rotates together with the armature core. The commutator has segments extending radially. The segments have sliding contact surfaces orthogonal to an axial line of the rotary shaft. At least a part of each power supply brush comes into contact with the sliding contact surface at a position further radially outward than the armature coil.
    Type: Application
    Filed: October 30, 2007
    Publication date: May 29, 2008
    Applicant: ASMO Co., Ltd.
    Inventors: Shinji Santo, Masayuki Kuwano
  • Patent number: 7352100
    Abstract: A stator of a direct current motor includes six magnetic poles. An armature of the direct current motor includes an armature core having eight slots, a plurality of windings wound around the armature core as concentrated windings, and a commutator having twenty-four segments connected to the windings. The plurality of windings are connected to one another to form a single closed loop. The direct current motor further includes an anode power supply brush and a cathode power supply brush that slidably contact the segments. The aspect ratio, which is the ratio of the diameter of the armature core with respect to the length in the axial direction of the armature core is set to a range of 3.2 through 5.6. This increases the constraint torque/mass ratio of the direct current motor.
    Type: Grant
    Filed: March 6, 2006
    Date of Patent: April 1, 2008
    Assignee: Asmo Co., Ltd.
    Inventors: Yasuhide Ito, Shinji Santo, Masayuki Kuwano, Toshio Yamamoto, Yoshiki Nakano