Patents by Inventor Shinya Usuda

Shinya Usuda has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11267715
    Abstract: Aiming at providing a ceria-based composite particle dispersion capable of polishing silica film, Si wafer or even hard-to-process material at high polishing rate, and can give high surface accuracy, disclosed is a ceria-based composite particle dispersion that contains a ceria-based composite particle that has an average particle size of 50 to 350 nm, to solve the aforementioned problem, featured by that the ceria-based composite particle has a mother particle, a cerium-containing silica layer, a child particle, and an easily soluble silica-containing layer; the mother particle contains amorphous silica as a major ingredient; the child particle contains crystalline ceria as a major ingredient; ratio of the mass of the easily soluble silica-containing layer relative to the mass of the ceria-based composite particle falls in a specific range; mass ratio of silica and ceria in the ceria-based composite particle falls in a specific range; the ceria-based composite particle, when analyzed by X-ray diffractometry,
    Type: Grant
    Filed: May 23, 2018
    Date of Patent: March 8, 2022
    Assignee: JGC Catalysts and Chemicals Ltd.
    Inventors: Michio Komatsu, Hiroyasu Nishida, Yuji Tawarazako, Shinya Usuda, Kazuhiro Nakayama
  • Patent number: 10920120
    Abstract: A ceria composite particle dispersion has ceria composite particles having an average particle size of 50 to 350 nm and having the features described below. Each ceria composite particle has a mother particle, a cerium-containing silica layer on the surface thereof, and child particles dispersed inside the cerium-containing silica layer, the mother particles being amorphous silica-based and the child particles being crystalline ceria-based. The child particles have a coefficient of variation (CV value) in a particle size distribution of 14 to 40%. The ceria composite particles have a mass ratio of silica to ceria of 100:11-316. Only the crystal phase of ceria is detected when the ceria composite particles are subjected to X-ray diffraction. The average crystallite size of the crystalline ceria measured by subjecting the ceria composite particles to X-ray diffraction is 10 to 25 nm.
    Type: Grant
    Filed: October 6, 2017
    Date of Patent: February 16, 2021
    Assignee: JGC CATALYSTS AND CHEMICALS LTD.
    Inventors: Michio Komatsu, Yuji Tawarazako, Shinya Usuda, Kazuhiro Nakayama, Shota Kawakami
  • Patent number: 10844259
    Abstract: Disclosed is a silica-based composite fine particle dispersion including a silica-based composite fine particle which comprises a mother particle containing amorphous silica as a main component with a child particle containing crystalline ceria as a main component on a surface thereof. Features of the silica-based composite fine particle include a silica to ceria mass ratio of 100:11 to 316, and when subjected to X-ray diffraction, only the crystalline phase of ceria is detected, and when subjected to X-ray diffraction for measurement, the crystalline ceria has a crystallite diameter of 10 to 25 nm.
    Type: Grant
    Filed: April 5, 2017
    Date of Patent: November 24, 2020
    Assignee: JGC Catalysts and Chemicals Ltd.
    Inventors: Yuji Tawarazako, Michio Komatsu, Kazuhiro Nakayama, Yukihiro Iwasaki, Yoshinori Wakamiya, Shota Kawakami, Shinya Usuda
  • Publication number: 20200087554
    Abstract: Aiming at providing a ceria-based composite particle dispersion capable of polishing silica film, Si wafer or even hard-to-process material at high polishing rate, and can give high surface accuracy, disclosed is a ceria-based composite particle dispersion that contains a ceria-based composite particle that has an average particle size of 50 to 350 nm, to solve the aforementioned problem, featured by that the ceria-based composite particle has a mother particle, a cerium-containing silica layer, a child particle, and an easily soluble silica-containing layer; the mother particle contains amorphous silica as a major ingredient; the child particle contains crystalline ceria as a major ingredient; ratio of the mass of the easily soluble silica-containing layer relative to the mass of the ceria-based composite particle falls in a specific range; mass ratio of silica and ceria in the ceria-based composite particle falls in a specific range; the ceria-based composite particle, when analyzed by X-ray diffractometry,
    Type: Application
    Filed: May 23, 2018
    Publication date: March 19, 2020
    Inventors: Michio Komatsu, Hiroyasu Nishida, Yuji Tawarazako, Shinya Usuda, Kazuhiro Nakayama
  • Publication number: 20190248668
    Abstract: A ceria composite particle dispersion has ceria composite particles having an average particle size of 50 to 350 nm and having the features described below. Each ceria composite particle has a mother particle, a cerium-containing silica layer on the surface thereof, and child particles dispersed inside the cerium-containing silica layer, the mother particles being amorphous silica-based and the child particles being crystalline ceria-based. The child particles have a coefficient of variation (CV value) in a particle size distribution of 14 to 40%. The ceria composite particles have a mass ratio of silica to ceria of 100:11-316. Only the crystal phase of ceria is detected when the ceria composite particles are subjected to X-ray diffraction. The average crystallite size of the crystalline ceria measured by subjecting the ceria composite particles to X-ray diffraction is 10 to 25 nm.
    Type: Application
    Filed: October 6, 2017
    Publication date: August 15, 2019
    Applicant: JGC CATALYSTS AND CHEMICALS LTD.
    Inventors: Michio KOMATSU, Yuji TAWARAZAKO, Shinya USUDA, Kazuhiro NAKAYAMA, Shota KAWAKAMI
  • Publication number: 20190153279
    Abstract: Disclosed is a silica-based composite fine particle dispersion including a silica-based composite fine particle which comprises a mother particle containing amorphous silica as a main component with a child particle containing crystalline ceria as a main component on a surface thereof. Features of the silica-based composite fine particle include a silica to ceria mass ratio of 100:11 to 316, and when subjected to X-ray diffraction, only the crystalline phase of ceria is detected, and when subjected to X-ray diffraction for measurement, the crystalline ceria has a crystallite diameter of 10 to 25 nm.
    Type: Application
    Filed: April 5, 2017
    Publication date: May 23, 2019
    Inventors: Yuji Tawarazako, Michio Komatsu, Kazuhiro Nakayama, Yukihiro Iwasaki, Yoshinori Wakamiya, Shota Kawakami, Shinya Usuda