Patents by Inventor Shiow-Hwei Hwang

Shiow-Hwei Hwang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10429319
    Abstract: The present disclosure is directed to a system for inspecting a sample with multiple wavelengths of illumination simultaneously via parallel imaging paths. The system may include at least a first detector or set of detectors configured to detect illumination reflected, scattered, or radiated along a first imaging path from a selected portion of the sample in response to the first wavelength of illumination and a second detector or set of detectors configured to concurrently detect illumination reflected, scattered, or radiated along a second imaging path from the selected portion of the sample (i.e. the same location on the sample) in response to the second wavelength of illumination, where the second imaging path may at least partially share illumination and/or detection optics with an autofocus channel.
    Type: Grant
    Filed: March 17, 2014
    Date of Patent: October 1, 2019
    Assignee: KLA-Tencor Corporation
    Inventors: Shiow-Hwei Hwang, Amir Bar, Grace Hsiu-Ling Chen, Daniel L. Cavan
  • Patent number: 9052494
    Abstract: An optical system may include an objective having at least four mirrors including an outermost mirror with aspect ratio <20:1 and focusing optics including a refractive optical element. The objective provides imaging at numerical aperture >0.7, central obscuration <35% in pupil. An objective may have two or more mirrors, one with a refractive module that seals off an outermost mirror's central opening. A broad band imaging system may include one objective and two or more imaging paths that provide imaging at numerical aperture >0.7 and field of view >0.8 mm. An optical imaging system may comprise an objective and two or more imaging paths. The imaging paths may provide two or more simultaneous broadband images of a sample in two or more modes. The modes may have different illumination and/or collection pupil apertures or different pixel sizes at the sample.
    Type: Grant
    Filed: March 30, 2010
    Date of Patent: June 9, 2015
    Assignee: KLA-Tencor Technologies Corporation
    Inventors: Shiow-Hwei Hwang, Gregory L. Kirk, Hwan J. Jeong, David Shafer, Russel Hudyma
  • Publication number: 20140285657
    Abstract: The present disclosure is directed to a system for inspecting a sample with multiple wavelengths of illumination simultaneously via parallel imaging paths. The system may include at least a first detector or set of detectors configured to detect illumination reflected, scattered, or radiated along a first imaging path from a selected portion of the sample in response to the first wavelength of illumination and a second detector or set of detectors configured to concurrently detect illumination reflected, scattered, or radiated along a second imaging path from the selected portion of the sample (i.e. the same location on the sample) in response to the second wavelength of illumination, where the second imaging path may at least partially share illumination and/or detection optics with an autofocus channel.
    Type: Application
    Filed: March 17, 2014
    Publication date: September 25, 2014
    Applicant: KLA-Tencor Corporation
    Inventors: Shiow-Hwei Hwang, Amir Bar, Grace Hsiu-Ling Chen, Daniel L. Cavan
  • Patent number: 8575576
    Abstract: A wafer inspection system includes a laser droplet plasma (LDP) light source that generates light with sufficient radiance to enable bright field inspection at wavelengths down to 40 nanometers. Light generated by the LDP source is directed to the wafer and light from the illuminated wafer is collected by a high NA objective with all reflective elements. A detector detects the collected light for further image processing. The LDP source includes a droplet generator that dispenses droplets of a feed material. An excitation light generated by a laser is focused on a droplet of the feed material. The interaction of the excitation light with the droplet generates a plasma that emits illumination light with a radiance of at least 10 W/mm2-sr within a spectral range from 40 nanometers to 200 nanometers.
    Type: Grant
    Filed: February 14, 2011
    Date of Patent: November 5, 2013
    Assignee: KLA-Tencor Corporation
    Inventors: Richard W. Solarz, Stephane P. Durant, Shiow-Hwei Hwang
  • Publication number: 20130155399
    Abstract: An optical system may include an objective having at least four mirrors including an outermost mirror with aspect ratio <20:1 and focusing optics including a refractive optical element. The objective provides imaging at numerical aperture >0.7, central obscuration <35% in pupil. An objective may have two or more mirrors, one with a refractive module that seals off an outermost mirror's central opening. A broad band imaging system may include one objective and two or more imaging paths that provide imaging at numerical aperture >0.7 and field of view >0.8 mm. An optical imaging system may comprise an objective and two or more imaging paths. The imaging paths may provide two or more simultaneous broadband images of a sample in two or more modes. The modes may have different illumination and/or collection pupil apertures or different pixel sizes at the sample.
    Type: Application
    Filed: March 30, 2010
    Publication date: June 20, 2013
    Applicant: KLA-Tencor Corporation
    Inventors: Shiow-Hwei Hwang, Gregory L. Kirk, Hwan J. Jeong, David Shafer, Russell Hudyma
  • Patent number: 8384887
    Abstract: Methods and systems for inspection of a specimen using different parameters are provided. One computer-implemented method includes determining optimal parameters for inspection based on selected defects. This method also includes setting parameters of an inspection system at the optimal parameters prior to inspection. Another method for inspecting a specimen includes illuminating the specimen with light having a wavelength below about 350 nm and with light having a wavelength above about 350 nm. The method also includes processing signals representative of light collected from the specimen to detect defects or process variations on the specimen. One system configured to inspect a specimen includes a first optical subsystem coupled to a broadband light source and a second optical subsystem coupled to a laser. The system also includes a third optical subsystem configured to couple light from the first and second optical subsystems to an objective, which focuses the light onto the specimen.
    Type: Grant
    Filed: June 8, 2010
    Date of Patent: February 26, 2013
    Assignee: KLA-Tencor Technologies Corp.
    Inventors: Steve R. Lange, Paul Frank Marella, Nat Ceglio, Shiow-Hwei Hwang, Tao-Yi Fu
  • Patent number: 8355140
    Abstract: Systems configured to generate output corresponding to defects on a specimen and systems configured to generate phase information about defects on a specimen are provided. One system includes an optical subsystem that is configured to create interference between a test beam and a reference beam. The test beam and the reference beam are reflected from the specimen. The system also includes a detector that is configured to generate output representative of the interference between the test and reference beams. The interference increases contrast between the output corresponding to the defects and output corresponding to non-defective portions of the specimen.
    Type: Grant
    Filed: April 5, 2011
    Date of Patent: January 15, 2013
    Assignee: KLA-Tencor Technologies Corp.
    Inventors: Shiow-Hwei Hwang, Tao-Yi Fu, Xiumei Liu
  • Publication number: 20120205546
    Abstract: A wafer inspection system includes a laser droplet plasma (LDP) light source that generates light with sufficient radiance to enable bright field inspection at wavelengths down to 40 nanometers. Light generated by the LDP source is directed to the wafer and light from the illuminated wafer is collected by a high NA objective with all reflective elements. A detector detects the collected light for further image processing. The LDP source includes a droplet generator that dispenses droplets of a feed material. An excitation light generated by a laser is focused on a droplet of the feed material. The interaction of the excitation light with the droplet generates a plasma that emits illumination light with a radiance of at least 10 W/mm2-sr within a spectral range from 40 nanometers to 200 nanometers.
    Type: Application
    Filed: February 14, 2011
    Publication date: August 16, 2012
    Applicant: KLA-TENCOR CORPORATION
    Inventors: Richard W. Solarz, Stephane P. Durant, Shiow-Hwei Hwang
  • Patent number: 8178860
    Abstract: An inspection system for creating images of a substrate. A light source directs an incident light onto the substrate, and a light source timing control controls a pulse timing of the incident light. A stage holds the substrate and moves the substrate under the incident light, so that the substrate reflects the incident light as a reflected light. A stage position sensor reports a position of the stage, and a stage position control controls the position of the stage. A time domain integration sensor receives the reflected light, and a time domain integration sensor timing control controls a line shift of the time domain integration sensor.
    Type: Grant
    Filed: August 20, 2009
    Date of Patent: May 15, 2012
    Assignee: KLA-Tencor Corporation
    Inventors: Gregory L. Kirk, Matthew W. Derstine, Shiow-Hwei Hwang, Isabella T. Lewis
  • Publication number: 20110242528
    Abstract: An optical system may include an objective having at least four mirrors including an outermost mirror with aspect ratio <20:1 and focusing optics including a refractive optical element. The objective provides imaging at numerical aperture >0.7, central obscuration <35% in pupil. An objective may have two or more mirrors, one with a refractive module that seals off an outermost mirror's central opening. A broad band imaging system may include one objective and two or more imaging paths that provide imaging at numerical aperture >0.7 and field of view >0.8 mm. An optical imaging system may comprise an objective and two or more imaging paths. The imaging paths may provide two or more simultaneous broadband images of a sample in two or more modes. The modes may have different illumination and/or collection pupil apertures or different pixel sizes at the sample.
    Type: Application
    Filed: March 30, 2010
    Publication date: October 6, 2011
    Applicant: KLA-Tencor Corporation
    Inventors: Shiow-Hwei Hwang, Gregory L. Kirk, Hwan J. Jeong, David Shafer, Russell Hudyma
  • Publication number: 20110181891
    Abstract: Systems configured to generate output corresponding to defects on a specimen and systems configured to generate phase information about defects on a specimen are provided. One system includes an optical subsystem that is configured to create interference between a test beam and a reference beam. The test beam and the reference beam are reflected from the specimen. The system also includes a detector that is configured to generate output representative of the interference between the test and reference beams. The interference increases contrast between the output corresponding to the defects and output corresponding to non-defective portions of the specimen.
    Type: Application
    Filed: April 5, 2011
    Publication date: July 28, 2011
    Applicant: KLA-TENCOR TECHNOLOGIES CORPORATION
    Inventors: Shiow-Hwei Hwang, Tao-Yi Fu, Xiumei Liu
  • Patent number: 7924434
    Abstract: Systems configured to generate output corresponding to defects on a specimen and systems configured to generate phase information about defects on a specimen are provided. One system includes an optical subsystem that is configured to create interference between a test beam and a reference beam. The test beam and the reference beam are reflected from the specimen. The system also includes a detector that is configured to generate output representative of the interference between the test and reference beams. The interference increases contrast between the output corresponding to the defects and output corresponding to non-defective portions of the specimen.
    Type: Grant
    Filed: August 2, 2006
    Date of Patent: April 12, 2011
    Assignee: KLA-Tencor Technologies Corp.
    Inventors: Shiow-Hwei Hwang, Tao-Yi Fu, Xiumei Liu
  • Publication number: 20110043797
    Abstract: An inspection system for creating images of a substrate. A light source directs an incident light onto the substrate, and a light source timing control controls a pulse timing of the incident light. A stage holds the substrate and moves the substrate under the incident light, so that the substrate reflects the incident light as a reflected light. A stage position sensor reports a position of the stage, and a stage position control controls the position of the stage. A time domain integration sensor receives the reflected light, and a time domain integration sensor timing control controls a line shift of the time domain integration sensor.
    Type: Application
    Filed: August 20, 2009
    Publication date: February 24, 2011
    Applicant: KLA-TENCOR CORPORATION
    Inventors: Gregory L. Kirk, Matthew W. Derstine, Shiow-Hwei Hwang, Isabella T. Lewis
  • Publication number: 20100238433
    Abstract: Methods and systems for inspection of a specimen using different parameters are provided. One computer-implemented method includes determining optimal parameters for inspection based on selected defects. This method also includes setting parameters of an inspection system at the optimal parameters prior to inspection. Another method for inspecting a specimen includes illuminating the specimen with light having a wavelength below about 350 nm and with light having a wavelength above about 350 nm. The method also includes processing signals representative of light collected from the specimen to detect defects or process variations on the specimen. One system configured to inspect a specimen includes a first optical subsystem coupled to a broadband light source and a second optical subsystem coupled to a laser. The system also includes a third optical subsystem configured to couple light from the first and second optical subsystems to an objective, which focuses the light onto the specimen.
    Type: Application
    Filed: June 8, 2010
    Publication date: September 23, 2010
    Applicant: KLA-TENCOR TECHNOLOGIES CORPORATION
    Inventors: Steve R. Lange, Paul Frank Marella, Nat Ceglio, Shiow-Hwei Hwang, Tao-Yi Fu
  • Patent number: 7738089
    Abstract: Methods and systems for inspection of a specimen using different parameters are provided. One computer-implemented method includes determining optimal parameters for inspection based on selected defects. This method also includes setting parameters of an inspection system at the optimal parameters prior to inspection. Another method for inspecting a specimen includes illuminating the specimen with light having a wavelength below about 350 nm and with light having a wavelength above about 350 nm. The method also includes processing signals representative of light collected from the specimen to detect defects or process variations on the specimen. One system configured to inspect a specimen includes a first optical subsystem coupled to a broadband light source and a second optical subsystem coupled to a laser. The system also includes a third optical subsystem configured to couple light from the first and second optical subsystems to an objective, which focuses the light onto the specimen.
    Type: Grant
    Filed: September 3, 2004
    Date of Patent: June 15, 2010
    Assignee: KLA-Tencor Technologies Corp.
    Inventors: Steve R. Lange, Paul Frank Marella, Nat Ceglio, Shiow-Hwei Hwang, Tao-Yi Fu
  • Patent number: 7327464
    Abstract: A system and method for coherent optical inspection are described. In one embodiment, an illuminating beam illuminates a sample, such as a semiconductor wafer, to generate a reflected beam. A reference beam then interferes with the reflected beam to generate an interference pattern at a detector, which records the interference pattern. The interference pattern may then be compared with a comparison image to determine differences between the interference pattern and the comparison image. According to another aspect, the phase difference between the reference beam and the reflected beam may be adjusted to enhance signal contrast. Another embodiment provides for using differential interference techniques to suppress a regular pattern in the sample.
    Type: Grant
    Filed: April 23, 2007
    Date of Patent: February 5, 2008
    Assignee: KLA-Tencor Technologies Corporation
    Inventors: Shiow-Hwei Hwang, Tao-Yi Fu
  • Publication number: 20070195332
    Abstract: A system and method for coherent optical inspection are described. In one embodiment, an illuminating beam illuminates a sample, such as a semiconductor wafer, to generate a reflected beam. A reference beam then interferes with the reflected beam to generate an interference pattern at a detector, which records the interference pattern. The interference pattern may then be compared with a comparison image to determine differences between the interference pattern and the comparison image. According to another aspect, the phase difference between the reference beam and the reflected beam may be adjusted to enhance signal contrast. Another embodiment provides for using differential interference techniques to suppress a regular pattern in the sample.
    Type: Application
    Filed: April 23, 2007
    Publication date: August 23, 2007
    Applicant: KLA-Tencor Technologies Corporation
    Inventors: Shiow-Hwei Hwang, Tao-Yi Fu
  • Patent number: 7259869
    Abstract: A system and method are disclosed for performing bright field and dark field optical inspection. In one embodiment, a system is provided for performing bright field coherent detection by means of an interferometer and dark field detection of scattered light using a single apparatus. In other embodiments, the system is operable to perform dark field detection of scattered light as well as phase measuring through phase shifting or spatial fringe analysis techniques. In yet another embodiment, an additional light source is provided for generating an illumination beam directed obliquely at the substrate to permit capture and detection of scattered light in directions near a normal direction to a surface of the substrate, and in directions away from a normal direction to a surface.
    Type: Grant
    Filed: June 28, 2005
    Date of Patent: August 21, 2007
    Assignee: KLA-Tencor Technologies Corporation
    Inventors: Shiow-Hwei Hwang, Nat Ceglio
  • Patent number: 7209239
    Abstract: A system and method for coherent optical inspection are described. In one embodiment, an illuminating beam illuminates a sample, such as a semiconductor wafer, to generate a reflected beam. A reference beam then interferes with the reflected beam to generate an interference pattern at a detector, which records the interference pattern. The interference pattern may then be compared with a comparison image to determine differences between the interference pattern and the comparison image. According to another aspect, the phase difference between the reference beam and the reflected beam may be adjusted to enhance signal contrast. Another embodiment provides for using differential interference techniques to suppress a regular pattern in the sample.
    Type: Grant
    Filed: October 2, 2003
    Date of Patent: April 24, 2007
    Assignee: KLA-Tencor Technologies Corporation
    Inventors: Shiow-Hwei Hwang, Tao-Yi Fu
  • Publication number: 20070030477
    Abstract: Systems configured to generate output corresponding to defects on a specimen and systems configured to generate phase information about defects on a specimen are provided. One system includes an optical subsystem that is configured to create interference between a test beam and a reference beam. The test beam and the reference beam are reflected from the specimen. The system also includes a detector that is configured to generate output representative of the interference between the test and reference beams. The interference increases contrast between the output corresponding to the defects and output corresponding to non-defective portions of the specimen.
    Type: Application
    Filed: August 2, 2006
    Publication date: February 8, 2007
    Applicant: KLA-TENCOR TECHNOLOGIES CORP.
    Inventors: Shiow-Hwei Hwang, Tao-Yi Fu, Xiumei Liu