Patents by Inventor Shisen Xu

Shisen Xu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11925898
    Abstract: The present invention discloses a flue gas low-temperature adsorption denitrification method, including: pressurizing a flue gas that has been subjected to dust removal and desulfurization, precooling the pressurized flue gas, cooling the precooled flue gas to a temperature lower than room temperature by a flue gas cooling system, flowing the flue gas at the temperature lower than room temperature into a low-temperature denitrification system, performing physical adsorption denitrification in the low-temperature denitrification system, precooling the flue gas that has been subjected to dust removal and desulfurization with the denitrificated flue gas, and flowing the heat-absorbed clean flue gas into a chimney to be discharged.
    Type: Grant
    Filed: April 5, 2021
    Date of Patent: March 12, 2024
    Assignee: HUANENG CLEAN ENERGY RESEARCH INSTITUTE
    Inventors: Shiqing Wang, Qixiang Fan, Shisen Xu, Shiwang Gao, Shaomin Wang, He Zhao, Minhua Jiang, Ping Xiao, Bin Huang, Hongwei Niu, Jinyi Wang, Lianbo Liu
  • Publication number: 20230387342
    Abstract: The disclosure provides a method for preparing an electrode film layer on a surface of a solar cell substrate. The method includes: a) obtaining a metal electrode material melt by heating and melting a metal electrode material under a vacuum condition; b) bombarding the metal electrode material melt with an ion source at low energy, so that it is sputtered and deposited on the surface of the solar cell substrate to form the electrode film layer; in which the energy of low energy bombarding is 30 eV to 80 eV.
    Type: Application
    Filed: August 14, 2023
    Publication date: November 30, 2023
    Inventors: Ping Xiao, Jiguang Xiong, Zhiguo Zhao, Jialiang Liu, Mengjie Li, Dongming Zhao, Xiaojun Qin, Yun Zhang, Chao Dong, Xueling Wang, Shisen Xu, Ruwei Liu, Sichao Liang
  • Patent number: 11728502
    Abstract: A method for replenishing an electrolyte of a molten carbonate fuel cell stack includes: preparing an electrolyte colloidal solution containing 10% to 20% of the electrolyte and having a viscosity of 200 to 800 Pa·s; replenishing the electrolyte of the cell stack using the electrolyte colloidal solution prepared in step 1 to allow the electrolyte to adhere to an electrode and an internal channel of the cell stack; discharging excess electrolyte colloidal solution in the cell stack; and drying and discharging water or an organic solvent in the cell stack under an inert gas condition to complete replenishment of the electrolyte of the cell stack, and performing a discharge performance test.
    Type: Grant
    Filed: October 27, 2021
    Date of Patent: August 15, 2023
    Assignee: HUANENG CLEAN ENERGY RESEARCH INSTITUTE
    Inventors: Jian Cheng, Ruiyun Zhang, Chengzhuang Lu, Hao Li, Shisen Xu, Baomin Wang, Guanjun Yang
  • Patent number: 11577199
    Abstract: Provided is a method for desulphurizating and denitrating a flue gas in an integrated manner based on low-temperature adsorption. The method includes: decreasing a temperature of the flue gas below a room temperature by using a flue gas cooling system; removing moisture in the flue gas by using a dehumidification system; sending the flue gas to a SO2 and NOx adsorbing column system; and simultaneously adsorbing SO2 and NOx of the flue gas with a material of activated coke, activated carbon, a molecular sieve or diatom mud in the SO2 and NOx adsorbing column system to implement an integration of desulphurization and denitration of the flue gas based on the low-temperature adsorption. With the present method, SO2 and NOx of the flue gas can be adsorbed simultaneously in an environment having a temperature below the room temperature.
    Type: Grant
    Filed: October 14, 2021
    Date of Patent: February 14, 2023
    Assignees: CHINA HUANENG GROUP CO., LTD, HUANENG CLEAN ENERGY RESEARCH INSTITUTE
    Inventors: Shiqing Wang, Shisen Xu, Shiwang Gao, He Zhao, Minhua Jiang, Ping Xiao, Bin Huang, Hongwei Niu, Jinyi Wang, Lianbo Liu, Dongfang Guo
  • Publication number: 20220412556
    Abstract: A method for desulfurizing and decarbonizing a flue gas includes: feeding a boiler flue gas after denitrating and dedusting to a water cooler; cooling the boiler flue gas in the water cooler to a temperature near room temperature, and discharging condensed water; feeding a wet flue gas to a washing tower; washing and cooling the wet flue gas with a washing liquid to separate H2O, SO2 and CO2 in a solid form from the flue gas; feeding a solid-liquid mixed slurry from a bottom of the washing tower to a solid-liquid separator to separate solid H2O, SO2 and CO2 from the washing liquid; feeding the solid H2O, SO2 and CO2 to a rectification separation column; separating CO2 from SO2 and H2O by a reboiler at a bottom of the rectification separation column; and discharging CO2, SO2 and H2O.
    Type: Application
    Filed: August 30, 2022
    Publication date: December 29, 2022
    Inventors: Shiqing WANG, Shiwang GAO, Shisen XU, Ping XIAO, Minhua JIANG, Bin HUANG
  • Publication number: 20220052369
    Abstract: A method for replenishing an electrolyte of a molten carbonate fuel cell stack includes: preparing an electrolyte colloidal solution containing 10% to 20% of the electrolyte and having a viscosity of 200 to 800 Pa·s; replenishing the electrolyte of the cell stack using the electrolyte colloidal solution prepared in step 1 to allow the electrolyte to adhere to an electrode and an internal channel of the cell stack; discharging excess electrolyte colloidal solution in the cell stack; and drying and discharging water or an organic solvent in the cell stack under an inert gas condition to complete replenishment of the electrolyte of the cell stack, and performing a discharge performance test.
    Type: Application
    Filed: October 27, 2021
    Publication date: February 17, 2022
    Inventors: Jian CHENG, Ruiyun ZHANG, Chengzhuang LU, Hao LI, Shisen XU, Baomin WANG, Guanjun YANG
  • Publication number: 20220040634
    Abstract: Provided is a method for desulphurizating and denitrating a flue gas in an integrated manner based on low-temperature adsorption. The method includes: decreasing a temperature of the flue gas below a room temperature by using a flue gas cooling system; removing moisture in the flue gas by using a dehumidification system; sending the flue gas to a SO2 and NOx adsorbing column system; and simultaneously adsorbing SO2 and NOx of the flue gas with a material of activated coke, activated carbon, a molecular sieve or diatom mud in the SO2 and NOx adsorbing column system to implement an integration of desulphurization and denitration of the flue gas based on the low-temperature adsorption. With the present method, SO2 and NOx of the flue gas can be adsorbed simultaneously in an environment having a temperature below the room temperature.
    Type: Application
    Filed: October 14, 2021
    Publication date: February 10, 2022
    Inventors: Shiqing WANG, Shisen XU, Shiwang GAO, He ZHAO, Minhua JIANG, Ping XIAO, Bin HUANG, Hongwei NIU, Jinyi WANG, Lianbo LIU, Dongfang GUO
  • Publication number: 20210245096
    Abstract: Disclosed is a flue gas low-temperature adsorption denitration system and process. The system includes a booster fan, a cold energy recoverer, a flue gas cooling system, a flue gas switching valve, and two denitration adsorption towers. An inlet of the booster fan is in communication with an inlet flue gas pipeline. The booster fan, the cold energy recoverer, the flue gas cooling system, the flue gas switching valve, and the denitration adsorption towers are sequentially communicated. An outlet of the flue gas switching valve is in communication with each of the two second denitration adsorption towers. Flue gas outlets of the two denitration adsorption towers are in communication with a flue gas manifold. The flue gas manifold is communicated with the cold quantity recoverer. Two denitration adsorption towers take turns to carry out denitration and regeneration processes, so that continuous denitration operations of the system can be achieved.
    Type: Application
    Filed: April 25, 2021
    Publication date: August 12, 2021
    Inventors: Shiqing WANG, Qixiang FAN, Shisen XU, Shiwang GAO, Shaomin WANG, He ZHAO, Minhua JIANG, Ping XIAO, Bin HUANG, Hongwei NIU, Jinyi WANG, Lianbo LIU
  • Publication number: 20210220772
    Abstract: The present invention discloses a flue gas low-temperature adsorption denitrification method, including: pressurizing a flue gas that has been subjected to dust removal and desulfurization, precooling the pressurized flue gas, cooling the precooled flue gas to a temperature lower than room temperature by a flue gas cooling system, flowing the flue gas at the temperature lower than room temperature into a low-temperature denitrification system, performing physical adsorption denitrification in the low-temperature denitrification system, precooling the flue gas that has been subjected to dust removal and desulfurization with the denitrificated flue gas, and flowing the heat-absorbed clean flue gas into a chimney to be discharged.
    Type: Application
    Filed: April 5, 2021
    Publication date: July 22, 2021
    Inventors: Shiqing WANG, Qixiang FAN, Shisen XU, Shiwang GAO, Shaomin WANG, He ZHAO, Minhua JIANG, Ping XIAO, Bin HUANG, Hongwei NIU, Jinyi WANG, Lianbo LIU
  • Patent number: 10578570
    Abstract: A test system and method for thermoelectric module. The test system includes an electrical performance test unit, a heat flux detection unit, and a processor. The electrical performance test unit connects with the thermoelectric module under power generation state to test output power of the thermoelectric module and working current and internal resistance under this output power. The heat flux detection unit includes a heat flux sensor installed at a cold-end of the thermoelectric module to detect the heat flux. The processor electrically connects with the electrical performance test unit and the heat flux detection unit to calculate the thermoelectric conversion efficiency ? of thermoelectric module. By using the technical scheme of the invention, the detection of the thermoelectric conversion efficiency of the thermoelectric module is accomplished.
    Type: Grant
    Filed: June 10, 2014
    Date of Patent: March 3, 2020
    Inventors: Anjun Jin, Dawei Liu, Qiming Li, Wenbo Peng, Shisen Xu
  • Publication number: 20170115245
    Abstract: A test system and method for thermoelectric module. The test system includes an electrical performance test unit, a heat flux detection unit, and a processor. The electrical performance test unit connects with the thermoelectric module under power generation state to test output power of the thermoelectric module and working current and internal resistance under this output power. The heat flux detection unit includes a heat flux sensor installed at a cold-end of the thermoelectric module to detect the heat flux. The processor electrically connects with the electrical performance test unit and the heat flux detection unit to calculate the thermoelectric conversion efficiency ? of thermoelectric module. By using the technical scheme of the invention, the detection of the thermoelectric conversion efficiency of the thermoelectric module is accomplished.
    Type: Application
    Filed: June 10, 2014
    Publication date: April 27, 2017
    Inventors: Anjun Jin, Dawei Liu, Qiming Li, Wenbo Peng, Shisen Xu