Patents by Inventor Shiuli Das

Shiuli Das has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240027794
    Abstract: Systems and methods for regulating the speed of movement of virtual objects presented by a wearable system are described. The wearable system may present three-dimensional (3D) virtual content that moves, e.g., laterally across the user's field of view and/or in perceived depth from the user. The speed of the movement may follow the profile of an S-curve, with a gradual increase to a maximum speed, and a subsequent gradual decrease in speed until an end point of the movement is reached. The decrease in speed may be more gradual than the increase in speed. This speed curve may be utilized in the movement of virtual objections for eye-tracking calibration. The wearable system may track the position of a virtual object (an eye-tracking target) which moves with a speed following the S-curve. This speed curve allows for rapid movement of the eye-tracking target, while providing a comfortable viewing experience and high accuracy in determining the initial and final positions of the eye as it tracks the target.
    Type: Application
    Filed: June 23, 2023
    Publication date: January 25, 2024
    Inventors: Yan Xu, Ikko Fushiki, Suraj Manjunath Shanbhag, Shiuli Das, Jung-Suk Lee
  • Publication number: 20230418054
    Abstract: Systems and methods for depth plane selection in display system such as augmented reality display systems, including mixed reality display systems, are disclosed. A display(s) may present virtual image content via image light to an eye(s) of a user. The display(s) may output the image light to the eye(s) of the user, the image light to have different amounts of wavefront divergence corresponding to different depth planes at different distances away from the user. A camera(s) may capture images of the eye(s). An indication may be generated based on obtained images of the eye(s), indicating whether the user is identified. The display(s) may be controlled to output the image light to the eye(s) of the user, the image light to have the different amounts of wavefront divergence based at least in part on the generated indication indicating whether the user is identified.
    Type: Application
    Filed: September 7, 2023
    Publication date: December 28, 2023
    Inventors: Shiuli DAS, Suraj Manjunath Shanbhag, Abhishek Narain, Yan Xu
  • Patent number: 11789262
    Abstract: Systems and methods for depth plane selection in display system such as augmented reality display systems, including mixed reality display systems, are disclosed. A display(s) may present virtual image content via image light to an eye(s) of a user. The display(s) may output the image light to the eye(s) of the user, the image light to have different amounts of wavefront divergence corresponding to different depth planes at different distances away from the user. A camera(s) may capture images of the eye(s). An indication may be generated based on obtained images of the eye(s), indicating whether the user is identified. The display(s) may be controlled to output the image light to the eye(s) of the user, the image light to have the different amounts of wavefront divergence based at least in part on the generated indication indicating whether the user is identified.
    Type: Grant
    Filed: December 29, 2022
    Date of Patent: October 17, 2023
    Assignee: Magic Leap, Inc.
    Inventors: Shiuli Das, Suraj Manjunath Shanbhag, Abhishek Narain, Yan Xu
  • Patent number: 11726349
    Abstract: Systems and methods for regulating the speed of movement of virtual objects presented by a wearable system are described. The wearable system may present three-dimensional (3D) virtual content that moves, e.g., laterally across the user's field of view and/or in perceived depth from the user. The speed of the movement may follow the profile of an S-curve, with a gradual increase to a maximum speed, and a subsequent gradual decrease in speed until an end point of the movement is reached. The decrease in speed may be more gradual than the increase in speed. This speed curve may be utilized in the movement of virtual objections for eye-tracking calibration. The wearable system may track the position of a virtual object (an eye-tracking target) which moves with a speed following the S-curve. This speed curve allows for rapid movement of the eye-tracking target, while providing a comfortable viewing experience and high accuracy in determining the initial and final positions of the eye as it tracks the target.
    Type: Grant
    Filed: February 11, 2021
    Date of Patent: August 15, 2023
    Assignee: Magic Leap, Inc.
    Inventors: Yan Xu, Ikko Fushiki, Suraj Manjunath Shanbhag, Shiuli Das, Jung-Suk Lee
  • Publication number: 20230139308
    Abstract: Systems and methods for depth plane selection in display system such as augmented reality display systems, including mixed reality display systems, are disclosed. A display(s) may present virtual image content via image light to an eye(s) of a user. The display(s) may output the image light to the eye(s) of the user, the image light to have different amounts of wavefront divergence corresponding to different depth planes at different distances away from the user. A camera(s) may capture images of the eye(s). An indication may be generated based on obtained images of the eye(s), indicating whether the user is identified. The display(s) may be controlled to output the image light to the eye(s) of the user, the image light to have the different amounts of wavefront divergence based at least in part on the generated indication indicating whether the user is identified.
    Type: Application
    Filed: December 29, 2022
    Publication date: May 4, 2023
    Inventors: Shiuli DAS, Suraj Manjunath SHANBHAG, Abhishek NARAIN, Yan XU
  • Patent number: 11592665
    Abstract: Systems and methods for depth plane selection in display system such as augmented reality display systems, including mixed reality display systems, are disclosed. A display(s) may present virtual image content via image light to an eye(s) of a user. The display(s) may output the image light to the eye(s) of the user, the image light to have different amounts of wavefront divergence corresponding to different depth planes at different distances away from the user. A camera(s) may capture images of the eye(s). An indication may be generated based on obtained images of the eye(s), indicating whether the user is identified. The display(s) may be controlled to output the image light to the eye(s) of the user, the image light to have the different amounts of wavefront divergence based at least in part on the generated indication indicating whether the user is identified.
    Type: Grant
    Filed: January 21, 2022
    Date of Patent: February 28, 2023
    Assignee: Magic Leap, Inc.
    Inventors: Shiuli Das, Suraj Manjunath Shanbhag, Abhishek Narain, Yan Xu
  • Publication number: 20230037046
    Abstract: A display system includes a head-mounted display configured to project light, having different amounts of wavefront divergence, to an eye of a user to display virtual image content appearing to be disposed at different depth planes. The wavefront divergence may be changed in discrete steps, with the change in steps being triggered based upon whether the user is fixating on a particular depth plane. The display system may be calibrated for switching depth planes for a main user. Upon determining that a guest user is utilizing the system, rather than undergoing a full calibration, the display system may be configured to switch depth planes based on a rough determination of the virtual content that the user is looking at. The virtual content has an associated depth plane and the display system may be configured to switch to the depth plane of that virtual content.
    Type: Application
    Filed: October 7, 2022
    Publication date: February 2, 2023
    Inventors: Samuel A. Miller, Lomesh Agarwal, Lionel Ernest Edwin, Ivan Li Chuen Yeoh, Daniel Farmer, Sergey Fyodorovich Prokushkin, Yonatan Munk, Edwin Joseph Selker, Erik Fonseka, Paul M. Greco, Jeffrey Scott Sommers, Bradley Vincent Stuart, Shiuli Das, Suraj Manjunath Shanbhag
  • Patent number: 11468640
    Abstract: A display system includes a head-mounted display configured to project light, having different amounts of wavefront divergence, to an eye of a user to display virtual image content appearing to be disposed at different depth planes. The wavefront divergence may be changed in discrete steps, with the change in steps being triggered based upon whether the user is fixating on a particular depth plane. The display system may be calibrated for switching depth planes for a main user. Upon determining that a guest user is utilizing the system, rather than undergoing a full calibration, the display system may be configured to switch depth planes based on a rough determination of the virtual content that the user is looking at. The virtual content has an associated depth plane and the display system may be configured to switch to the depth plane of that virtual content.
    Type: Grant
    Filed: August 2, 2019
    Date of Patent: October 11, 2022
    Assignee: Magic Leap, Inc.
    Inventors: Samuel A. Miller, Lomesh Agarwal, Lionel Ernest Edwin, Ivan Li Chuen Yeoh, Daniel Farmer, Sergey Fyodorovich Prokushkin, Yonatan Munk, Edwin Joseph Selker, Erik Fonseka, Paul M. Greco, Jeffrey Scott Sommers, Bradley Vincent Stuart, Shiuli Das, Suraj Manjunath Shanbhag
  • Publication number: 20220301217
    Abstract: Systems and methods for eye tracking latency enhancements. An example head-mounted system obtains a first image of an eye of a user. The first image is provided as input to a machine learning model which has been trained to generate iris and pupil segmentation data given an image of an eye. A second image of the eye is obtained. A set of locations in the second image at which one or more glints are shown is detected based on iris segmentation data generated for the first image. A region of the second image at which the pupil of the eye of the user is shown is identified based on pupil segmentation data generated for the first image. A pose of the eye of the user is determined based on the detected set of glint locations in the second image and the identified region of the second image.
    Type: Application
    Filed: July 1, 2020
    Publication date: September 22, 2022
    Inventors: Bradley Vincent Stuart, Daniel Farmer, Tiejian Zhang, Shiuli Das, Suraj Manjunath Shanbhag, Erik Fonseka
  • Publication number: 20220146823
    Abstract: Systems and methods for depth plane selection in display system such as augmented reality display systems, including mixed reality display systems, are disclosed. A display(s) may present virtual image content via image light to an eye(s) of a user. The display(s) may output the image light to the eye(s) of the user, the image light to have different amounts of wavefront divergence corresponding to different depth planes at different distances away from the user. A camera(s) may capture images of the eye(s). An indication may be generated based on obtained images of the eye(s), indicating whether the user is identified. The display(s) may be controlled to output the image light to the eye(s) of the user, the image light to have the different amounts of wavefront divergence based at least in part on the generated indication indicating whether the user is identified.
    Type: Application
    Filed: January 21, 2022
    Publication date: May 12, 2022
    Inventors: Shiuli DAS, Suraj Manjunath SHANBHAG, Abhishek NARAIN, Yan XU
  • Patent number: 11269181
    Abstract: Systems and methods for depth plane selection in display system such as augmented reality display systems, including mixed reality display systems, are disclosed. A display(s) may present virtual image content via image light to an eye(s) of a user. The display(s) may output the image light to the eye(s) of the user, the image light to have different amounts of wavefront divergence corresponding to different depth planes at different distances away from the user. A camera(s) may capture images of the eye(s). An indication may be generated based on obtained images of the eye(s), indicating whether the user is identified. The display(s) may be controlled to output the image light to the eye(s) of the user, the image light to have the different amounts of wavefront divergence based at least in part on the generated indication indicating whether the user is identified.
    Type: Grant
    Filed: December 9, 2020
    Date of Patent: March 8, 2022
    Assignee: MAGIC LEAP, INC.
    Inventors: Shiuli Das, Suraj Manjunath Shanbhag, Abhishek Narain, Yan Xu
  • Publication number: 20210255485
    Abstract: Systems and methods for regulating the speed of movement of virtual objects presented by a wearable system are described. The wearable system may present three-dimensional (3D) virtual content that moves, e.g., laterally across the user's field of view and/or in perceived depth from the user. The speed of the movement may follow the profile of an S-curve, with a gradual increase to a maximum speed, and a subsequent gradual decrease in speed until an end point of the movement is reached. The decrease in speed may be more gradual than the increase in speed. This speed curve may be utilized in the movement of virtual objections for eye-tracking calibration. The wearable system may track the position of a virtual object (an eye-tracking target) which moves with a speed following the S-curve. This speed curve allows for rapid movement of the eye-tracking target, while providing a comfortable viewing experience and high accuracy in determining the initial and final positions of the eye as it tracks the target.
    Type: Application
    Filed: February 11, 2021
    Publication date: August 19, 2021
    Inventors: Yan Xu, Ikko Fushiki, Suraj Manjunath Shanbhag, Shiuli Das, Jung-Suk Lee
  • Publication number: 20210173206
    Abstract: Systems and methods for depth plane selection in display system such as augmented reality display systems, including mixed reality display systems, are disclosed. A display(s) may present virtual image content via image light to an eye(s) of a user. The display(s) may output the image light to the eye(s) of the user, the image light to have different amounts of wavefront divergence corresponding to different depth planes at different distances away from the user. A camera(s) may capture images of the eye(s). An indication may be generated based on obtained images of the eye(s), indicating whether the user is identified. The display(s) may be controlled to output the image light to the eye(s) of the user, the image light to have the different amounts of wavefront divergence based at least in part on the generated indication indicating whether the user is identified.
    Type: Application
    Filed: December 9, 2020
    Publication date: June 10, 2021
    Inventors: Shiuli DAS, Suraj Manjunath SHANBHAG, Abhishek NARAIN, Yan XU
  • Publication number: 20200043236
    Abstract: A display system includes a head-mounted display configured to project light, having different amounts of wavefront divergence, to an eye of a user to display virtual image content appearing to be disposed at different depth planes. The wavefront divergence may be changed in discrete steps, with the change in steps being triggered based upon whether the user is fixating on a particular depth plane. The display system may be calibrated for switching depth planes for a main user. Upon determining that a guest user is utilizing the system, rather than undergoing a full calibration, the display system may be configured to switch depth planes based on a rough determination of the virtual content that the user is looking at. The virtual content has an associated depth plane and the display system may be configured to switch to the depth plane of that virtual content.
    Type: Application
    Filed: August 2, 2019
    Publication date: February 6, 2020
    Inventors: Samuel A. Miller, Lomesh Agarwal, Lionel Ernest Edwin, Ivan Li Chuen Yeoh, Daniel Farmer, Sergey Fyodorovich Prokushkin, Yonatan Munk, Edwin Joseph Selker, Erik Fonseka, Paul M. Greco, Jeffrey Scott Sommers, Bradley Vincent Stuart, Shiuli Das, Suraj Manjunath Shanbhag