Patents by Inventor Shiv Kumar Saini
Shiv Kumar Saini has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12112349Abstract: Methods and systems are provided herein for summarizing a set of anomalies corresponding to a group of metrics of interest to a monitoring system user. Initially, a set of anomalies corresponding to a group of metrics is identified as having values that are outside of a predetermined range. A correlation value is determined for at least a portion of pairs of anomalies in the set of anomalies. For each anomaly in the set of anomalies, an informativeness value is computed that indicates how informative each anomaly in the set of anomalies is to the monitoring system user. The correlation values and the informativeness values are then used to identify at least one key anomaly and a plurality of non-key anomalies from the set of anomalies. A summary is generated of the identified at least one key anomaly to provide information to the monitoring system user about the set of anomalies for a particular time period.Type: GrantFiled: August 16, 2016Date of Patent: October 8, 2024Assignee: Adobe Inc.Inventors: Natwar Modani, Iftikhar Ahamath Burhanuddin, Gaurush Hiranandani, Shiv Kumar Saini
-
Publication number: 20240320538Abstract: Systems and methods identify anomalous data in tabular data. A set of tabular data records is received. Each tabular data record includes data elements for a numbers of attributes, with each data element providing a value for a corresponding attribute. An anomaly score is generated for each data element of each tabular data record. Additionally, an evidence set is defined for each attribute and each tabular data record based on the anomaly scores for the data elements. An anomaly score is generated for each attribute and each tabular data record using the evidence sets. An output is provided that identifies one or more anomalous data subsets determined based on the anomaly scores for the attributes and tabular data records. Each anomalous data subset identifies a subset of attributes and a subset of tabular data records.Type: ApplicationFiled: March 20, 2023Publication date: September 26, 2024Inventors: Ramasuri NARAYANAM, Shiv Kumar SAINI, Koyel MUKHERJEE, Manisha PADALA, Keshav VADREVU, Gautam CHOUDHARY, Atharv TYAGI
-
Publication number: 20240303176Abstract: A computing resource allocation system receives entity resource usage data describing computing resource usage of an executable service platform by an entity as part of a first allocation generated using a first allocation mechanism. A computing resource allocation system generates an entity resource model based on the entity resource usage data of the computing resource usage of the executable service platform as part of the first allocation mechanism. A computing resource allocation system simulates computing resource usage of the executable service platform by the entity as part of a second allocation mechanism based on the entity resource model and the entity resource usage data. A computing resource allocation system estimates a second allocation to provide to the entity based on the simulating.Type: ApplicationFiled: March 6, 2023Publication date: September 12, 2024Applicant: Adobe Inc.Inventors: Raunak Shah, Shiv Kumar Saini, Atanu R. Sinha
-
Publication number: 20240303662Abstract: Systems and methods for identifying fraudulent activity in NFT exchanges are described. Embodiments of the present disclosure obtain transaction data for non-fungible tokens (NFTs) and generate a transaction graph based on the transaction data. The transaction graph includes nodes corresponding to blockchain addresses and nodes corresponding to individual NFTs. Embodiments additionally identify a cycle of the transaction graph, predict a fraudulent activity based on the cycle using a machine learning model, and transmit an alert to a user indicating the predicted fraudulent activity.Type: ApplicationFiled: March 9, 2023Publication date: September 12, 2024Inventors: Raunak Shah, Harshvardhan ., Mohit Kumar, Shambhavi Pardhi, Alakh Dixit, Shaddy Garg, Shiv Kumar Saini, Ramasuri Narayanam
-
Patent number: 12086646Abstract: In implementations of systems for cloud-based resource allocation using meters, a computing device implements a resource system to receive resource data describing an amount of cloud-based resources reserved for consumption by client devices during a period of time and a total amount of cloud-based resources consumed by the client devices during the period of time. The resource system determines a consumption distribution using each meter included in a set of meters. Each of the consumption distributions allocates a portion of the total amount of the cloud-based resources consumed to each client device of the client devices. A particular meter used to determine a particular consumption distribution is selected based on a Kendall Tau coefficient of the particular consumption distribution. An amount of cloud-based resources to allocate for a future period of time is estimated using the particular meter and an approximate Shapley value.Type: GrantFiled: February 17, 2022Date of Patent: September 10, 2024Assignee: Adobe Inc.Inventors: Atanu R. Sinha, Shiv Kumar Saini, Sapthotharan Krishnan Nair, Saarthak Sandip Marathe, Manupriya Gupta, Brahmbhatt Paresh Anand, Ayush Chauhan
-
Publication number: 20240232775Abstract: In some examples, an environment evaluation system accesses interaction data recording interactions by users with an online platform hosted by a host system and computes, based on the interaction data, interface experience metrics. The interface experience metrics includes an individual experience metric for each user and a transition experience metric for each transition in the interactions by the users with the online platform. The environment evaluation system identifies a user with the individual experience metric below a pre-determined threshold, identifies a transition performed by the user that has a transition experience metric below a second threshold, and analyzes the transition to determine users who have performed the transition. The environment evaluation system updates the host system with the individual experience metrics and the transition metrics, based on which the host system can perform modifications of interface elements of the online platform to improve the experience.Type: ApplicationFiled: October 19, 2022Publication date: July 11, 2024Inventors: Atanu R. Sinha, Shiv Kumar Saini, Prithvi Bhutani, Nikhil Sheoran, Kevin Cobourn, Jeff D. Chasin, Fan Du, Eric Matisoff
-
Publication number: 20240135296Abstract: In some examples, an environment evaluation system accesses interaction data recording interactions by users with an online platform hosted by a host system and computes, based on the interaction data, interface experience metrics. The interface experience metrics includes an individual experience metric for each user and a transition experience metric for each transition in the interactions by the users with the online platform. The environment evaluation system identifies a user with the individual experience metric below a pre-determined threshold, identifies a transition performed by the user that has a transition experience metric below a second threshold, and analyzes the transition to determine users who have performed the transition. The environment evaluation system updates the host system with the individual experience metrics and the transition metrics, based on which the host system can perform modifications of interface elements of the online platform to improve the experience.Type: ApplicationFiled: October 18, 2022Publication date: April 25, 2024Inventors: Atanu R. Sinha, Shiv Kumar Saini, Prithvi Bhutani, Nikhil Sheoran, Kevin Cobourn, Jeff D. Chasin, Fan Du, Eric Matisoff
-
Patent number: 11954309Abstract: In implementations of systems for predicting a terminal event, a computing device implements a termination system to receive input data defining a period of time and a maximum event threshold. This system uses a classification model to generate event scores for a plurality of entity devices. Each of the event scores indicates a probability of an event occurrence for a corresponding entity device within a period of time. The plurality of entity devices are segmented into a first segment and a second segment based on an event score threshold. Entity devices included in the first segment have event scores greater than the event score threshold and entity devices included in the second segment have event scores below the event score threshold. The termination system generates an indication of a probability that a number of event occurrences for the entity devices included in the second segment exceeds the maximum even threshold within the period of time.Type: GrantFiled: May 4, 2020Date of Patent: April 9, 2024Assignee: Adobe Inc.Inventors: Amit Doda, Gaurav Sinha, Kai Yeung Lau, Akangsha Sunil Bedmutha, Shiv Kumar Saini, Ritwik Sinha, Vaidyanathan Venkatraman, Niranjan Shivanand Kumbi, Omar Rahman, Atanu R. Sinha
-
Patent number: 11886964Abstract: Methods and systems disclosed herein relate generally to systems and methods for using a machine-learning model to predict user-engagement levels of users in response to presentation of future interactive content. A content provider system accesses a machine-learning model, which was trained using a training dataset including previous user-device actions performed by a plurality of users in response to previous interactive content. The content provider system receives user-activity data of a particular user and applies the machine-learning model to the user-activity data, in which the user-activity data includes user-device actions performed by the particular user in response to interactive content. The machine-learning model generates an output including a categorical value that represents a predicted user-engagement level of the particular user in response to a presentation of the future interactive content.Type: GrantFiled: May 17, 2021Date of Patent: January 30, 2024Assignee: ADOBE INC.Inventors: Atanu R. Sinha, Xiang Chen, Sungchul Kim, Omar Rahman, Jean Bernard Hishamunda, Goutham Srivatsav Arra, Shiv Kumar Saini
-
Patent number: 11816120Abstract: Certain embodiments involve extracting seasonal, level, and spike components from a time series of metrics data, which describe interactions with an online service over a time period. For example, an analytical system decomposes the time series into latent components that include a seasonal component series, a level component series, a spike component series, and an error component series. The decomposition involves configuring an optimization algorithm with a constraint indicating that the time series is a sum of these latent components. The decomposition also involves executing the optimization algorithm to minimize an objective function subject to the constraint and identifying, from the executed optimization algorithm, the seasonal component series, the level component series, the spike component series, and the error component series that minimize the objective function. The analytical system outputs at least some latent components for anomaly-detection or data-forecasting.Type: GrantFiled: March 17, 2020Date of Patent: November 14, 2023Assignee: Adobe Inc.Inventors: Shiv Kumar Saini, Sunav Choudhary, Gaurush Hiranandani
-
Patent number: 11790379Abstract: A method, apparatus, and non-transitory computer readable medium for data analytics are described. Embodiments of the method, apparatus, and non-transitory computer readable medium include monitoring online activity corresponding to a plurality of users; receiving aggregate marketing data for a marketing activity; identifying online activity data for a time period corresponding to the marketing activity based on the monitoring; generating a regression model based on the aggregate marketing data and the online activity data using Bayesian regression, wherein the regression model represents a relationship between the marketing activity and the online activity, comprises a time effect coefficient, and is based on a prior distribution of the time effect coefficient that decays to zero as time increases; and estimating a treatment effect for the marketing activity on the online activity based on the regression model, wherein the treatment effect comprises a rate of effect decay.Type: GrantFiled: August 27, 2020Date of Patent: October 17, 2023Assignee: ADOBE, INC.Inventors: Shiv Kumar Saini, Ritwik Sinha, Moumita Sinha, David Arbour
-
Publication number: 20230306318Abstract: A method and system for outage forecasting are described. One or more aspects of the method and system include receiving, by a machine learning model, time series data for a service metric of a computer network; generating, by the machine learning model, probability distribution information for the service metric based on the time series data, wherein the probability distribution information is generated using a machine learning model that is trained using a distribution loss and a classification loss; and generating, by a forecasting component, outage forecasting information for the computer network based on the probability distribution information.Type: ApplicationFiled: March 24, 2022Publication date: September 28, 2023Inventors: Shaddy Garg, Shubham Agarwal, Sumit Bisht, Chahat Jain, Ashritha Gonuguntla, Nikhil Sheoran, Shiv Kumar Saini
-
Publication number: 20230259403Abstract: In implementations of systems for cloud-based resource allocation using meters, a computing device implements a resource system to receive resource data describing an amount of cloud-based resources reserved for consumption by client devices during a period of time and a total amount of cloud-based resources consumed by the client devices during the period of time. The resource system determines a consumption distribution using each meter included in a set of meters. Each of the consumption distributions allocates a portion of the total amount of the cloud-based resources consumed to each client device of the client devices. A particular meter used to determine a particular consumption distribution is selected based on a Kendall Tau coefficient of the particular consumption distribution. An amount of cloud-based resources to allocate for a future period of time is estimated using the particular meter and an approximate Shapley value.Type: ApplicationFiled: February 17, 2022Publication date: August 17, 2023Applicant: Adobe Inc.Inventors: Atanu R. Sinha, Shiv Kumar Saini, Sapthotharan Krishnan Nair, Saarthak Sandip Marathe, Manupriya Gupta, Brahmbhatt Paresh Anand, Ayush Chauhan
-
Patent number: 11694165Abstract: A system implements a key value memory network including a key matrix with key vectors learned from training static feature data and time-series feature data, a value matrix with value vectors representing time-series trends, and an input layer to receive, for a target entity, input data comprising a concatenation of static feature data of the target entity, time-specific feature data, and time-series feature data for the target entity. The key value memory network also includes an entity-embedding layer to generate an input vector from the input data, a key-addressing layer to generate a weight vector indicating similarities between the key vectors and the input vector, a value-reading layer to compute a context vector from the weight and value vectors, and an output layer to generate predicted time-series data for a target metric of the target entity by applying a continuous activation function to the context vector and the input vector.Type: GrantFiled: October 5, 2022Date of Patent: July 4, 2023Assignee: Adobe Inc.Inventors: Ayush Chauhan, Shiv Kumar Saini, Parth Gupta, Archiki Prasad, Amireddy Prashanth Reddy, Ritwick Chaudhry
-
Publication number: 20230031050Abstract: A system implements a key value memory network including a key matrix with key vectors learned from training static feature data and time-series feature data, a value matrix with value vectors representing time-series trends, and an input layer to receive, for a target entity, input data comprising a concatenation of static feature data of the target entity, time-specific feature data, and time-series feature data for the target entity. The key value memory network also includes an entity-embedding layer to generate an input vector from the input data, a key-addressing layer to generate a weight vector indicating similarities between the key vectors and the input vector, a value-reading layer to compute a context vector from the weight and value vectors, and an output layer to generate predicted time-series data for a target metric of the target entity by applying a continuous activation function to the context vector and the input vector.Type: ApplicationFiled: October 5, 2022Publication date: February 2, 2023Inventors: Ayush Chauhan, Shiv Kumar Saini, Parth Gupta, Archiki Prasad, Amireddy Prashanth Reddy, Ritwick Chaudhry
-
Patent number: 11551194Abstract: Techniques for exchanging data segments between data aggregators and data consumers. In an embodiment, a value of an arbitrary data segment selected by a data consumer is computed. In particular, an individual user value is calculated for each user represented in the data segment, wherein the individual user value is a weighted sum (or other function) of the one or more features of the data segment attributable to that user, plus an additive gaussian noise. The overall value of the data segment is the sum of the individual user values. An offer price for the data segment can then be calculated using the overall value. Once a request is received from the consumer to purchase the data segment at the offer price, the data segment can be exchanged between the aggregator and consumer. Thus, a data marketplace or platform for the exchange of data segments is enabled.Type: GrantFiled: September 28, 2021Date of Patent: January 10, 2023Assignee: Adobe Inc.Inventors: Shiv Kumar Saini, Ritwick Chaudhry, Harvineet Singh, Bhavya Bahl, Sriya Sainath, Savya Sindhu Gupta
-
Patent number: 11521221Abstract: This disclosure involves predictive modeling with entity representations computed from neural network models simultaneously trained on multiple tasks. For example, a method includes a processing device performing operations including accessing input data for an entity and transforming the input data into a dense vector entity representation representing the entity. Transforming the input data includes applying, to the input data, a neural network including simultaneously trained propensity models. Each propensity model predicts a different task based on the input data. Transforming the input data also includes extracting the dense vector entity representation from a common layer of the neural network to which the propensity models are connected.Type: GrantFiled: March 1, 2018Date of Patent: December 6, 2022Assignee: ADOBE INC.Inventors: Shiv Kumar Saini, Vishwa Vinay, Vaibhav Nagar, Aishwarya Mittal
-
Patent number: 11501107Abstract: This disclosure involves using key-value memory networks to predict time-series data. For instance, a computing system retrieves, for a target entity, static feature data and target time-series feature data. The computing system can normalize the target time-series feature data based on a normalization scale. The computing system also generates input data by, for example, concatenating the static feature data, the normalized time-series feature data, and time-specific feature data. The computing system generates predicted time-series data for the target metric of the target entity by applying a key-value memory network to the input data. The key-value memory network can include a key matrix learned from training static feature data and training time-series feature data, a value matrix representing time-series trends, and an output layer with a continuous activation function for generating predicted time-series data.Type: GrantFiled: May 7, 2020Date of Patent: November 15, 2022Assignee: Adobe Inc.Inventors: Ayush Chauhan, Shiv Kumar Saini, Parth Gupta, Archiki Prasad, Amireddy Prashanth Reddy, Ritwick Chaudhry
-
Publication number: 20220139010Abstract: The present disclosure describes systems, methods, and non-transitory computer readable media for generating and providing a causal-graph interface that visually depicts causal relationships among dimensions and represents uncertainty metrics for such relationships as part of a streamlined visualization of a causal graph. The disclosed systems can determine causality among dimensions of multidimensional data and determine uncertainty metrics associated with individual causal relationships. Additionally, the disclosed system can generate a visual representation of a causal graph with nodes arranged in stratified layers and can connect the layered nodes with uncertainty-aware-causal edges to represent both the causality between the dimensions and the uncertainty metrics.Type: ApplicationFiled: October 29, 2020Publication date: May 5, 2022Inventors: Fan Du, Xiao Xie, Shiv Kumar Saini, Gaurav Sinha, Ayush Chauhan
-
Patent number: 11321885Abstract: The present disclosure describes systems, methods, and non-transitory computer readable media for generating and providing a causal-graph interface that visually depicts causal relationships among dimensions and represents uncertainty metrics for such relationships as part of a streamlined visualization of a causal graph. The disclosed systems can determine causality among dimensions of multidimensional data and determine uncertainty metrics associated with individual causal relationships. Additionally, the disclosed system can generate a visual representation of a causal graph with nodes arranged in stratified layers and can connect the layered nodes with uncertainty-aware-causal edges to represent both the causality between the dimensions and the uncertainty metrics.Type: GrantFiled: October 29, 2020Date of Patent: May 3, 2022Assignee: Adobe Inc.Inventors: Fan Du, Xiao Xie, Shiv Kumar Saini, Gaurav Sinha, Ayush Chauhan