Patents by Inventor Shivali JAIN

Shivali JAIN has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11604686
    Abstract: A method of acquiring data, a computer program product for implementing the method, a system for acquiring data, and a vehicle including the system. The method includes determining one or more data types and virtual channels required for one or more applications. The method also includes allocating a plurality of circular buffers in memory according to the determined data type(s) and virtual channel(s). One or more of the circular buffers are allocated to safety data lines. The remaining circular buffers are allocated to functional data lines. The method further includes storing at least one functional data line in a circular buffer allocated to functional data lines according to a data type and virtual channel of the functional data line. The method also includes storing at least one safety data line in a circular buffer allocated to safety data lines.
    Type: Grant
    Filed: May 26, 2020
    Date of Patent: March 14, 2023
    Assignee: NXP USA, Inc.
    Inventors: Shreya Singh, Maik Brett, Arpita Agarwal, Shivali Jain, Anshul Goel, Naveen Kumar Jain
  • Patent number: 11399084
    Abstract: A MIPI CSI-2/D-PHY receiving device is configured to handle being hot plugged to MIPI CSI-2/D-PHY transmitting device. During a hot plugging event, the MIPI CSI-2/D-PHY receiving device has not been initialized by receipt from the MIPI CSI-2/D-PHY transmitting device of a Stop State signal of duration TINIT. Though the MIPI CSI-2/D-PHY transmitting device is already transmitting data associated with a partial frame, the MIPI CSI-2/D-PHY receiving device will not enter into an error or unknown state, and will ignore line start/end and frame end events and drop the data packets associated with the partial frame until a frame start event corresponding to a full frame is received from the MIPI CSI-2/D-PHY transmitting device.
    Type: Grant
    Filed: May 12, 2020
    Date of Patent: July 26, 2022
    Assignee: NXP USA, Inc.
    Inventors: Joachim Fader, Naveen Kumar Jain, Shreya Singh, Thomas John Rodriguez, Shivali Jain
  • Publication number: 20210360090
    Abstract: A MIPI CSI-2/D-PHY receiving device is configured to handle being hot plugged to MIPI CSI-2/D-PHY transmitting device. During a hot plugging event, the MIPI CSI-2/D-PHY receiving device has not been initialized by receipt from the MIPI CSI-2/D-PHY transmitting device of a Stop State signal of duration TINIT. Though the MIPI CSI-2/D-PHY transmitting device is already transmitting data associated with a partial frame, the MIPI CSI-2/D-PHY receiving device will not enter into an error or unknown state, and will ignore line start/end and frame end events and drop the data packets associated with the partial frame until a frame start event corresponding to a full frame is received from the MIPI CSI-2/D-PHY transmitting device.
    Type: Application
    Filed: May 12, 2020
    Publication date: November 18, 2021
    Applicant: NXP USA, Inc.
    Inventors: Joachim Fader, Naveen Kumar Jain, Shreya Singh, Thomas John Rodriguez, Shivali Jain
  • Patent number: 11176386
    Abstract: A radar and/or camera system may include a receiver subsystem that receives image and/or radar data from one or more imaging/radar subsystems via multiple data lanes. A vision processor of the system may receive a data stream that includes the image and/or radar data and one or more synchronization signals including a vertical sync signal. The receiver subsystem may include a timing event generator that toggles the vertical sync signal in response to detecting certain timing event errors in order to correct these timing event errors without interrupting normal operation of the system. The receiver subsystem may include sync monitoring circuitry that may detect synchronization errors that occur when synchronization signal pulses received by the receiver subsystem do not match a predefined synchronization pattern within a scan window of predefined length. The system may be reset in response to detection of such synchronization errors.
    Type: Grant
    Filed: July 8, 2019
    Date of Patent: November 16, 2021
    Assignee: NXP USA, Inc.
    Inventors: Pavel Bohacik, Shreya Singh, Nishant Jain, Anshul Goel, Shivali Jain, Naveen Kumar Jain
  • Publication number: 20210012118
    Abstract: A radar and/or camera system may include a receiver subsystem that receives image and/or radar data from one or more imaging/radar subsystems via multiple data lanes. A vision processor of the system may receive a data stream that includes the image and/or radar data and one or more synchronization signals including a vertical sync signal. The receiver subsystem may include a timing event generator that toggles the vertical sync signal in response to detecting certain timing event errors in order to correct these timing event errors without interrupting normal operation of the system. The receiver subsystem may include sync monitoring circuitry that may detect synchronization errors that occur when synchronization signal pulses received by the receiver subsystem do not match a predefined synchronization pattern within a scan window of predefined length. The system may be reset in response to detection of such synchronization errors.
    Type: Application
    Filed: July 8, 2019
    Publication date: January 14, 2021
    Inventors: Pavel BOHACIK, Shreya SINGH, Nishant JAIN, Anshul GOEL, Shivali JAIN, Naveen Kumar JAIN
  • Patent number: 10891245
    Abstract: A video device is described that includes: a host processor comprising at least one input video port configured to receive a plurality of video data signals that comprise video data and embedded data from a plurality of virtual channels in a received frame; and a memory operably coupled to the host processor and configured to receive and store video data. The host processor is configured to segregate the video data from the embedded data in the received frame and process the embedded data individually.
    Type: Grant
    Filed: May 17, 2018
    Date of Patent: January 12, 2021
    Assignee: NXP USA, Inc.
    Inventors: Stephan Matthias Herrmann, Naveen Kumar Jain, Shivali Jain, Shreya Singh
  • Publication number: 20200379827
    Abstract: A method of acquiring data, a computer program product for implementing the method, a system for acquiring data, and a vehicle including the system. The method includes determining one or more data types and virtual channels required for one or more applications. The method also includes allocating a plurality of circular buffers in memory according to the determined data type(s) and virtual channel(s). One or more of the circular buffers are allocated to safety data lines. The remaining circular buffers are allocated to functional data lines. The method further includes storing at least one functional data line in a circular buffer allocated to functional data lines according to a data type and virtual channel of the functional data line. The method also includes storing at least one safety data line in a circular buffer allocated to safety data lines.
    Type: Application
    Filed: May 26, 2020
    Publication date: December 3, 2020
    Inventors: Shreya Singh, Maik Brett, Arpita Agarwal, Shivali Jain, Anshul Goel, Naveen Kumar Jain
  • Publication number: 20190057051
    Abstract: A video device is described that includes: a host processor comprising at least one input video port configured to receive a plurality of video data signals that comprise video data and embedded data from a plurality of virtual channels in a received frame; and a memory operably coupled to the host processor and configured to receive and store video data. The host processor is configured to segregate the video data from the embedded data in the received frame and process the embedded data individually.
    Type: Application
    Filed: May 17, 2018
    Publication date: February 21, 2019
    Inventors: Stephan Matthias HERRMANN, Naveen Kumar JAIN, Shivali JAIN, Shreya SINGH