Patents by Inventor Shivaram Subramaniam

Shivaram Subramaniam has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170060109
    Abstract: A predictive-control approach allows an electricity provider to monitor and proactively manage peak and off-peak residential intra-day electricity usage in an emerging smart energy grid using time-dependent dynamic pricing incentives. The daily load is modeled as time-shifted, but cost-differentiated and substitutable, copies of the continuously-consumed electricity resource, and a consumer-choice prediction model is constructed to forecast the corresponding intra-day shares of total daily load according to this model. This is embedded within an optimization framework for managing the daily electricity usage. A series of transformations are employed, including the reformulation-linearization technique (RLT) to obtain a Mixed-Integer Programming (MIP) model representation of the resulting nonlinear optimization problem. In addition, various regulatory and pricing constraints are incorporated in conjunction with the specified profit and capacity utilization objectives.
    Type: Application
    Filed: November 15, 2016
    Publication date: March 2, 2017
    Inventors: Soumyadip GHOSH, Jonathan R. HOSKING, Ramesh NATARAJAN, Shivaram SUBRAMANIAM, Xiaoxuan ZHANG
  • Patent number: 9576327
    Abstract: A predictive-control approach allows an electricity provider to monitor and proactively manage peak and off-peak residential intra-day electricity usage in an emerging smart energy grid using time-dependent dynamic pricing incentives. The daily load is modeled as time-shifted, but cost-differentiated and substitutable, copies of the continuously-consumed electricity resource, and a consumer-choice prediction model is constructed to forecast the corresponding intra-day shares of total daily load according to this model. This is embedded within an optimization framework for managing the daily electricity usage. A series of transformations are employed, including the reformulation-linearization technique (RLT) to obtain a Mixed-Integer Programming (MIP) model representation of the resulting nonlinear optimization problem. In addition, various regulatory and pricing constraints are incorporated in conjunction with the specified profit and capacity utilization objectives.
    Type: Grant
    Filed: June 6, 2013
    Date of Patent: February 21, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Soumyadip Ghosh, Jonathan R. Hosking, Ramesh Natarajan, Shivaram Subramaniam, Xiaoxuan Zhang
  • Patent number: 9563924
    Abstract: A predictive-control approach allows an electricity provider to monitor and proactively manage peak and off-peak residential intra-day electricity usage in an emerging smart energy grid using time-dependent dynamic pricing incentives. The daily load is modeled as time-shifted, but cost-differentiated and substitutable, copies of the continuously-consumed electricity resource, and a consumer-choice prediction model is constructed to forecast the corresponding intra-day shares of total daily load according to this model. This is embedded within an optimization framework for managing the daily electricity usage. A series of transformations are employed, including the reformulation-linearization technique (RLT) to obtain a Mixed-Integer Programming (MIP) model representation of the resulting nonlinear optimization problem. In addition, various regulatory and pricing constraints are incorporated in conjunction with the specified profit and capacity utilization objectives.
    Type: Grant
    Filed: June 14, 2013
    Date of Patent: February 7, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Soumyadip Ghosh, Jonathan R. Hosking, Ramesh Natarajan, Shivaram Subramaniam, Xiaoxuan Zhang
  • Publication number: 20140365022
    Abstract: A predictive-control approach allows an electricity provider to monitor and proactively manage peak and off-peak residential intra-day electricity usage in an emerging smart energy grid using time-dependent dynamic pricing incentives. The daily load is modeled as time-shifted, but cost-differentiated and substitutable, copies of the continuously-consumed electricity resource, and a consumer-choice prediction model is constructed to forecast the corresponding intra-day shares of total daily load according to this model. This is embedded within an optimization framework for managing the daily electricity usage. A series of transformations are employed, including the reformulation-linearization technique (RLT) to obtain a Mixed-Integer Programming (MIP) model representation of the resulting nonlinear optimization problem. In addition, various regulatory and pricing constraints are incorporated in conjunction with the specified profit and capacity utilization objectives.
    Type: Application
    Filed: June 6, 2013
    Publication date: December 11, 2014
    Applicant: International Business Machines Corporation
    Inventors: Soumyadip Ghosh, Jonathan Richard Morley Hosking, Ramesh Natarajan, Shivaram Subramaniam, Xiaoxuan Zhang
  • Publication number: 20140365024
    Abstract: A predictive-control approach allows an electricity provider to monitor and proactively manage peak and off-peak residential intra-day electricity usage in an emerging smart energy grid using time-dependent dynamic pricing incentives. The daily load is modeled as time-shifted, but cost-differentiated and substitutable, copies of the continuously-consumed electricity resource, and a consumer-choice prediction model is constructed to forecast the corresponding intra-day shares of total daily load according to this model. This is embedded within an optimization framework for managing the daily electricity usage. A series of transformations are employed, including the reformulation-linearization technique (RLT) to obtain a Mixed-Integer Programming (MIP) model representation of the resulting nonlinear optimization problem. In addition, various regulatory and pricing constraints are incorporated in conjunction with the specified profit and capacity utilization objectives.
    Type: Application
    Filed: June 14, 2013
    Publication date: December 11, 2014
    Inventors: Soumyadip Ghosh, Jonathan Richard Morley Hosking, Ramesh Natarajan, Shivaram Subramaniam, Xiaoxuan Zhang