Patents by Inventor Shiwang GAO

Shiwang GAO has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11925898
    Abstract: The present invention discloses a flue gas low-temperature adsorption denitrification method, including: pressurizing a flue gas that has been subjected to dust removal and desulfurization, precooling the pressurized flue gas, cooling the precooled flue gas to a temperature lower than room temperature by a flue gas cooling system, flowing the flue gas at the temperature lower than room temperature into a low-temperature denitrification system, performing physical adsorption denitrification in the low-temperature denitrification system, precooling the flue gas that has been subjected to dust removal and desulfurization with the denitrificated flue gas, and flowing the heat-absorbed clean flue gas into a chimney to be discharged.
    Type: Grant
    Filed: April 5, 2021
    Date of Patent: March 12, 2024
    Assignee: HUANENG CLEAN ENERGY RESEARCH INSTITUTE
    Inventors: Shiqing Wang, Qixiang Fan, Shisen Xu, Shiwang Gao, Shaomin Wang, He Zhao, Minhua Jiang, Ping Xiao, Bin Huang, Hongwei Niu, Jinyi Wang, Lianbo Liu
  • Publication number: 20230114074
    Abstract: A method for recovering metal resources in coal ash by molten salt electrolysis includes: calcinating the coal ash for decarburization to obtain the decarburized coal ash; subjecting the decarburized coal ash to ball milling to obtain coal ash powders; pressing the coal ash powders to form a plate; placing the plate as a cathode into an electrolyte in a reactor, and performing electrolytic reaction under an oxygen-free condition at an electrolytic reaction temperature of 550° C. to 900° C. in the reactor to obtain a reaction product; and removing the reaction product from the reactor, cooling the reaction product to room temperature in an inert atmosphere, and cleaning the cooled reaction product to obtain a silicon-aluminum based alloy.
    Type: Application
    Filed: November 3, 2022
    Publication date: April 13, 2023
    Inventors: Jinhang FAN, Shiqing WANG, Run SONG, Dongfang GUO, Lianbo LIU, Shiwang GAO
  • Publication number: 20230091871
    Abstract: A method for deep desiliconization of coal ash and recovery of silicon resources includes: ball-milling and drying decarburized coal ash; adding calcium oxide into a salt to obtain a mixture, and heating the mixture to a molten state under an inert atmosphere to obtain a molten salt, a molar ratio of the calcium oxide to the salt ranging from 0.5% to 18%; placing the ball-milled and dried coal ash into the molten salt, performing reaction under an atmospheric pressure, separating a reaction product from the molten salt, cooling the separated reaction product under an inert atmosphere, washing the cooled reaction product and drying the washed reaction product to obtain desiliconized coal ash; and cooling the molten salt under an inert atmosphere, washing the cooled salt and filtering the washed salt to recover calcium silicate and a filtrate.
    Type: Application
    Filed: November 3, 2022
    Publication date: March 23, 2023
    Inventors: Jinhang FAN, Dongfang GUO, Shiqing WANG, Lianbo LIU, Shiwang GAO
  • Patent number: 11577199
    Abstract: Provided is a method for desulphurizating and denitrating a flue gas in an integrated manner based on low-temperature adsorption. The method includes: decreasing a temperature of the flue gas below a room temperature by using a flue gas cooling system; removing moisture in the flue gas by using a dehumidification system; sending the flue gas to a SO2 and NOx adsorbing column system; and simultaneously adsorbing SO2 and NOx of the flue gas with a material of activated coke, activated carbon, a molecular sieve or diatom mud in the SO2 and NOx adsorbing column system to implement an integration of desulphurization and denitration of the flue gas based on the low-temperature adsorption. With the present method, SO2 and NOx of the flue gas can be adsorbed simultaneously in an environment having a temperature below the room temperature.
    Type: Grant
    Filed: October 14, 2021
    Date of Patent: February 14, 2023
    Assignees: CHINA HUANENG GROUP CO., LTD, HUANENG CLEAN ENERGY RESEARCH INSTITUTE
    Inventors: Shiqing Wang, Shisen Xu, Shiwang Gao, He Zhao, Minhua Jiang, Ping Xiao, Bin Huang, Hongwei Niu, Jinyi Wang, Lianbo Liu, Dongfang Guo
  • Publication number: 20220412556
    Abstract: A method for desulfurizing and decarbonizing a flue gas includes: feeding a boiler flue gas after denitrating and dedusting to a water cooler; cooling the boiler flue gas in the water cooler to a temperature near room temperature, and discharging condensed water; feeding a wet flue gas to a washing tower; washing and cooling the wet flue gas with a washing liquid to separate H2O, SO2 and CO2 in a solid form from the flue gas; feeding a solid-liquid mixed slurry from a bottom of the washing tower to a solid-liquid separator to separate solid H2O, SO2 and CO2 from the washing liquid; feeding the solid H2O, SO2 and CO2 to a rectification separation column; separating CO2 from SO2 and H2O by a reboiler at a bottom of the rectification separation column; and discharging CO2, SO2 and H2O.
    Type: Application
    Filed: August 30, 2022
    Publication date: December 29, 2022
    Inventors: Shiqing WANG, Shiwang GAO, Shisen XU, Ping XIAO, Minhua JIANG, Bin HUANG
  • Publication number: 20220048044
    Abstract: A system for integrated removal of multiple pollutants includes an economizer, an air preheater, an electrostatic precipitator, a flue gas cooler and a low-temperature adsorber; the economizer has a shell side inlet for feeding boiler flue gas, a tube side inlet for feeding boiler feedwater, and a shell side outlet connected to a tube side inlet of the air preheater; the air preheater has a shell side inlet for introducing boiler intake air, and a tube side outlet connected to the electrostatic precipitator; the electrostatic precipitator has a dust discharge port at a bottom thereof and a flue gas outlet connected to the flue gas cooler; the flue gas cooler has a condensate outlet at a bottom thereof and a cold flue gas outlet at a top thereof and connected to the low-temperature adsorber; and the low-temperature adsorber has a purified flue gas outlet at a tail thereof.
    Type: Application
    Filed: October 14, 2021
    Publication date: February 17, 2022
    Inventors: Shiqing WANG, Shiwang GAO, Lianbo LIU, Jinyi WANG, Hongwei NIU, Dongfang GUO
  • Publication number: 20220040634
    Abstract: Provided is a method for desulphurizating and denitrating a flue gas in an integrated manner based on low-temperature adsorption. The method includes: decreasing a temperature of the flue gas below a room temperature by using a flue gas cooling system; removing moisture in the flue gas by using a dehumidification system; sending the flue gas to a SO2 and NOx adsorbing column system; and simultaneously adsorbing SO2 and NOx of the flue gas with a material of activated coke, activated carbon, a molecular sieve or diatom mud in the SO2 and NOx adsorbing column system to implement an integration of desulphurization and denitration of the flue gas based on the low-temperature adsorption. With the present method, SO2 and NOx of the flue gas can be adsorbed simultaneously in an environment having a temperature below the room temperature.
    Type: Application
    Filed: October 14, 2021
    Publication date: February 10, 2022
    Inventors: Shiqing WANG, Shisen XU, Shiwang GAO, He ZHAO, Minhua JIANG, Ping XIAO, Bin HUANG, Hongwei NIU, Jinyi WANG, Lianbo LIU, Dongfang GUO
  • Publication number: 20220016616
    Abstract: Provided are a device and a method for purifying an organic amine solution. The device includes an ion exchange bed having an upper feeding port, through which the ion exchange bed is communicated with an inert gas cylinder, a fifth liquid storage tank and a second liquid adding pump; a lower feeding port, through which the ion exchange bed is communicated with a first liquid adding pump; a lower discharging port, through which the ion exchange bed is communicated with a second liquid storage tank, a third liquid storage tank and a fourth liquid storage tank; and an upper discharging port, through which the ion exchange bed is communicated with the fourth liquid storage tank.
    Type: Application
    Filed: September 29, 2021
    Publication date: January 20, 2022
    Inventors: Jinyi Wang, Shiwang Gao, Lianbo Liu, Hongwei Niu, Dongfang Guo, Shiqing Wang
  • Publication number: 20210245096
    Abstract: Disclosed is a flue gas low-temperature adsorption denitration system and process. The system includes a booster fan, a cold energy recoverer, a flue gas cooling system, a flue gas switching valve, and two denitration adsorption towers. An inlet of the booster fan is in communication with an inlet flue gas pipeline. The booster fan, the cold energy recoverer, the flue gas cooling system, the flue gas switching valve, and the denitration adsorption towers are sequentially communicated. An outlet of the flue gas switching valve is in communication with each of the two second denitration adsorption towers. Flue gas outlets of the two denitration adsorption towers are in communication with a flue gas manifold. The flue gas manifold is communicated with the cold quantity recoverer. Two denitration adsorption towers take turns to carry out denitration and regeneration processes, so that continuous denitration operations of the system can be achieved.
    Type: Application
    Filed: April 25, 2021
    Publication date: August 12, 2021
    Inventors: Shiqing WANG, Qixiang FAN, Shisen XU, Shiwang GAO, Shaomin WANG, He ZHAO, Minhua JIANG, Ping XIAO, Bin HUANG, Hongwei NIU, Jinyi WANG, Lianbo LIU
  • Publication number: 20210220772
    Abstract: The present invention discloses a flue gas low-temperature adsorption denitrification method, including: pressurizing a flue gas that has been subjected to dust removal and desulfurization, precooling the pressurized flue gas, cooling the precooled flue gas to a temperature lower than room temperature by a flue gas cooling system, flowing the flue gas at the temperature lower than room temperature into a low-temperature denitrification system, performing physical adsorption denitrification in the low-temperature denitrification system, precooling the flue gas that has been subjected to dust removal and desulfurization with the denitrificated flue gas, and flowing the heat-absorbed clean flue gas into a chimney to be discharged.
    Type: Application
    Filed: April 5, 2021
    Publication date: July 22, 2021
    Inventors: Shiqing WANG, Qixiang FAN, Shisen XU, Shiwang GAO, Shaomin WANG, He ZHAO, Minhua JIANG, Ping XIAO, Bin HUANG, Hongwei NIU, Jinyi WANG, Lianbo LIU