Patents by Inventor Shixiang Gu
Shixiang Gu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12240113Abstract: Implementations utilize deep reinforcement learning to train a policy neural network that parameterizes a policy for determining a robotic action based on a current state. Some of those implementations collect experience data from multiple robots that operate simultaneously. Each robot generates instances of experience data during iterative performance of episodes that are each explorations of performing a task, and that are each guided based on the policy network and the current policy parameters for the policy network during the episode. The collected experience data is generated during the episodes and is used to train the policy network by iteratively updating policy parameters of the policy network based on a batch of collected experience data. Further, prior to performance of each of a plurality of episodes performed by the robots, the current updated policy parameters can be provided (or retrieved) for utilization in performance of the episode.Type: GrantFiled: December 1, 2023Date of Patent: March 4, 2025Assignee: GOOGLE LLCInventors: Sergey Levine, Ethan Holly, Shixiang Gu, Timothy Lillicrap
-
Publication number: 20240308068Abstract: Training and/or utilizing a hierarchical reinforcement learning (HRL) model for robotic control. The HRL model can include at least a higher-level policy model and a lower-level policy model. Some implementations relate to technique(s) that enable more efficient off-policy training to be utilized in training of the higher-level policy model and/or the lower-level policy model. Some of those implementations utilize off-policy correction, which re-labels higher-level actions of experience data, generated in the past utilizing a previously trained version of the HRL model, with modified higher-level actions. The modified higher-level actions are then utilized to off-policy train the higher-level policy model. This can enable effective off-policy training despite the lower-level policy model being a different version at training time (relative to the version when the experience data was collected).Type: ApplicationFiled: May 24, 2024Publication date: September 19, 2024Inventors: Honglak Lee, Shixiang Gu, Sergey Levine
-
Patent number: 11992944Abstract: Training and/or utilizing a hierarchical reinforcement learning (HRL) model for robotic control. The HRL model can include at least a higher-level policy model and a lower-level policy model. Some implementations relate to technique(s) that enable more efficient off-policy training to be utilized in training of the higher-level policy model and/or the lower-level policy model. Some of those implementations utilize off-policy correction, which re-labels higher-level actions of experience data, generated in the past utilizing a previously trained version of the HRL model, with modified higher-level actions. The modified higher-level actions are then utilized to off-policy train the higher-level policy model. This can enable effective off-policy training despite the lower-level policy model being a different version at training time (relative to the version when the experience data was collected).Type: GrantFiled: May 17, 2019Date of Patent: May 28, 2024Assignee: GOOGLE LLCInventors: Honglak Lee, Shixiang Gu, Sergey Levine
-
Publication number: 20240131695Abstract: Implementations utilize deep reinforcement learning to train a policy neural network that parameterizes a policy for determining a robotic action based on a current state. Some of those implementations collect experience data from multiple robots that operate simultaneously. Each robot generates instances of experience data during iterative performance of episodes that are each explorations of performing a task, and that are each guided based on the policy network and the current policy parameters for the policy network during the episode. The collected experience data is generated during the episodes and is used to train the policy network by iteratively updating policy parameters of the policy network based on a batch of collected experience data. Further, prior to performance of each of a plurality of episodes performed by the robots, the current updated policy parameters can be provided (or retrieved) for utilization in performance of the episode.Type: ApplicationFiled: December 1, 2023Publication date: April 25, 2024Inventors: Sergey Levine, Ethan Holly, Shixiang Gu, Timothy Lillicrap
-
Patent number: 11897133Abstract: Implementations utilize deep reinforcement learning to train a policy neural network that parameterizes a policy for determining a robotic action based on a current state. Some of those implementations collect experience data from multiple robots that operate simultaneously. Each robot generates instances of experience data during iterative performance of episodes that are each explorations of performing a task, and that are each guided based on the policy network and the current policy parameters for the policy network during the episode. The collected experience data is generated during the episodes and is used to train the policy network by iteratively updating policy parameters of the policy network based on a batch of collected experience data. Further, prior to performance of each of a plurality of episodes performed by the robots, the current updated policy parameters can be provided (or retrieved) for utilization in performance of the episode.Type: GrantFiled: August 1, 2022Date of Patent: February 13, 2024Assignee: GOOGLE LLCInventors: Sergey Levine, Ethan Holly, Shixiang Gu, Timothy Lillicrap
-
Patent number: 11845183Abstract: Implementations utilize deep reinforcement learning to train a policy neural network that parameterizes a policy for determining a robotic action based on a current state. Some of those implementations collect experience data from multiple robots that operate simultaneously. Each robot generates instances of experience data during iterative performance of episodes that are each explorations of performing a task, and that are each guided based on the policy network and the current policy parameters for the policy network during the episode. The collected experience data is generated during the episodes and is used to train the policy network by iteratively updating policy parameters of the policy network based on a batch of collected experience data. Further, prior to performance of each of a plurality of episodes performed by the robots, the current updated policy parameters can be provided (or retrieved) for utilization in performance of the episode.Type: GrantFiled: August 1, 2022Date of Patent: December 19, 2023Assignee: GOOGLE LLCInventors: Sergey Levine, Ethan Holly, Shixiang Gu, Timothy Lillicrap
-
Publication number: 20220388159Abstract: Implementations utilize deep reinforcement learning to train a policy neural network that parameterizes a policy for determining a robotic action based on a current state. Some of those implementations collect experience data from multiple robots that operate simultaneously. Each robot generates instances of experience data during iterative performance of episodes that are each explorations of performing a task, and that are each guided based on the policy network and the current policy parameters for the policy network during the episode. The collected experience data is generated during the episodes and is used to train the policy network by iteratively updating policy parameters of the policy network based on a batch of collected experience data. Further, prior to performance of each of a plurality of episodes performed by the robots, the current updated policy parameters can be provided (or retrieved) for utilization in performance of the episode.Type: ApplicationFiled: August 1, 2022Publication date: December 8, 2022Inventors: Sergey Levine, Ethan Holly, Shixiang Gu, Timothy Lillicrap
-
Publication number: 20220284266Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for computing Q values for actions to be performed by an agent interacting with an environment from a continuous action space of actions. In one aspect, a system includes a value subnetwork configured to receive an observation characterizing a current state of the environment and process the observation to generate a value estimate; a policy subnetwork configured to receive the observation and process the observation to generate an ideal point in the continuous action space; and a subsystem configured to receive a particular point in the continuous action space representing a particular action; generate an advantage estimate for the particular action; and generate a Q value for the particular action that is an estimate of an expected return resulting from the agent performing the particular action when the environment is in the current state.Type: ApplicationFiled: March 25, 2022Publication date: September 8, 2022Inventors: Shixiang Gu, Timothy Paul Lillicrap, Ilya Sutskever, Sergey Vladimir Levine
-
Patent number: 11400587Abstract: Implementations utilize deep reinforcement learning to train a policy neural network that parameterizes a policy for determining a robotic action based on a current state. Some of those implementations collect experience data from multiple robots that operate simultaneously. Each robot generates instances of experience data during iterative performance of episodes that are each explorations of performing a task, and that are each guided based on the policy network and the current policy parameters for the policy network during the episode. The collected experience data is generated during the episodes and is used to train the policy network by iteratively updating policy parameters of the policy network based on a batch of collected experience data. Further, prior to performance of each of a plurality of episodes performed by the robots, the current updated policy parameters can be provided (or retrieved) for utilization in performance of the episode.Type: GrantFiled: September 14, 2017Date of Patent: August 2, 2022Assignee: GOOGLE LLCInventors: Sergey Levine, Ethan Holly, Shixiang Gu, Timothy Lillicrap
-
Patent number: 11288568Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for computing Q values for actions to be performed by an agent interacting with an environment from a continuous action space of actions. In one aspect, a system includes a value subnetwork configured to receive an observation characterizing a current state of the environment and process the observation to generate a value estimate; a policy subnetwork configured to receive the observation and process the observation to generate an ideal point in the continuous action space; and a subsystem configured to receive a particular point in the continuous action space representing a particular action; generate an advantage estimate for the particular action; and generate a Q value for the particular action that is an estimate of an expected return resulting from the agent performing the particular action when the environment is in the current state.Type: GrantFiled: February 9, 2017Date of Patent: March 29, 2022Assignee: Google LLCInventors: Shixiang Gu, Timothy Paul Lillicrap, Ilya Sutskever, Sergey Vladimir Levine
-
Publication number: 20210187733Abstract: Training and/or utilizing a hierarchical reinforcement learning (HRL) model for robotic control. The HRL model can include at least a higher-level policy model and a lower-level policy model. Some implementations relate to technique(s) that enable more efficient off-policy training to be utilized in training of the higher-level policy model and/or the lower-level policy model. Some of those implementations utilize off-policy correction, which re-labels higher-level actions of experience data, generated in the past utilizing a previously trained version of the HRL model, with modified higher-level actions. The modified higher-level actions are then utilized to off-policy train the higher-level policy model. This can enable effective off-policy training despite the lower-level policy model being a different version at training time (relative to the version when the experience data was collected).Type: ApplicationFiled: May 17, 2019Publication date: June 24, 2021Inventors: Honglak Lee, Shixiang Gu, Sergey Levine
-
Publication number: 20190232488Abstract: Implementations utilize deep reinforcement learning to train a policy neural network that parameterizes a policy for determining a robotic action based on a current state. Some of those implementations collect experience data from multiple robots that operate simultaneously. Each robot generates instances of experience data during iterative performance of episodes that are each explorations of performing a task, and that are each guided based on the policy network and the current policy parameters for the policy network during the episode. The collected experience data is generated during the episodes and is used to train the policy network by iteratively updating policy parameters of the policy network based on a batch of collected experience data. Further, prior to performance of each of a plurality of episodes performed by the robots, the current updated policy parameters can be provided (or retrieved) for utilization in performance of the episode.Type: ApplicationFiled: September 14, 2017Publication date: August 1, 2019Inventors: Sergey Levine, Ethan Holly, Shixiang Gu, Timothy Lillicrap
-
Publication number: 20170228662Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for computing Q values for actions to be performed by an agent interacting with an environment from a continuous action space of actions. In one aspect, a system includes a value subnetwork configured to receive an observation characterizing a current state of the environment and process the observation to generate a value estimate; a policy subnetwork configured to receive the observation and process the observation to generate an ideal point in the continuous action space; and a subsystem configured to receive a particular point in the continuous action space representing a particular action; generate an advantage estimate for the particular action; and generate a Q value for the particular action that is an estimate of an expected return resulting from the agent performing the particular action when the environment is in the current state.Type: ApplicationFiled: February 9, 2017Publication date: August 10, 2017Inventors: Shixiang Gu, Timothy Paul Lillicrap, Ilya ISutskever, Sergey Vladimir Levine