Patents by Inventor Shiyao Shan

Shiyao Shan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240133837
    Abstract: A sensor system is described with improved measurement accuracy that is achieved by reducing noise, baseline drift, or both based on processing a group of sensor element response signals. The response signals may be received in response to providing stimuli to the sensor element using different excitation frequencies over time. For example, the sensor circuitry may provide excitation signals to the sensing element with multiple excitation frequencies over time. The sensor system may include storage and processing circuitry to receive the response signals and to generate the correction values based on analyzing the received response signals. The sensor system may then provide adjusted response signals by reducing the noise, baseline drift, or both based on the correction values.
    Type: Application
    Filed: October 18, 2022
    Publication date: April 25, 2024
    Inventors: Radislav Alexandrovich Potyrailo, Shiyao Shan
  • Publication number: 20220265173
    Abstract: Nanoparticle-fibrous membrane composites are provided as tunable interfacial scaffolds for flexible chemical sensors and biosensors by assembling gold nanoparticles (Au NPs) in a fibrous membrane. The gold nanoparticles are functionalized with organic, polymeric and/or biological molecules. The fibrous membranes may include different filter papers, with one example featuring a multilayered fibrous membrane consisting of a cellulose nanofiber (CN) top layer, an electrospun polyacrylonitrile (PAN) nanofibrous midlayer (or alternate material), and a non-woven polyethylene terephthalate (PET) fibrous support layer, with the nanoparticles provided on the fibrous membranes through interparticle molecular/polymeric linkages and nanoparticle-nanofibrous interactions. Molecular linkers may be employed to tune hydrogen bonding and electrostatic and/or hydrophobic/hydrophilic interactions to provide sensor specificity to gases or liquids. The sensors act as chemiresistor-type sensors.
    Type: Application
    Filed: May 14, 2022
    Publication date: August 25, 2022
    Inventors: Chuan-Jian Zhong, Mark D. Poliks, Benjamin S. Hsiao, Ning Kang, Shan Yan, Jing Li, Shiyao Shan, Jin Luo
  • Patent number: 11331019
    Abstract: Nanoparticle-fibrous membrane composites are provided as tunable interfacial scaffolds for flexible chemical sensors and biosensors by assembling gold nanoparticles (Au NPs) in a fibrous membrane. The gold nanoparticles are functionalized with organic, polymeric and/or biological molecules. The fibrous membranes may include different filter papers, with one example featuring a multilayered fibrous membrane consisting of a cellulose nanofiber (CN) top layer, an electrospun polyacrylonitrile (PAN) nanofibrous midlayer (or alternate material), and a nonwoven polyethylene terephthalate (PET) fibrous support layer, with the nanoparticles provided on the fibrous membranes through interparticle molecular/polymeric linkages and nanoparticle-nanofibrous interactions. Molecular linkers may be employed to tune hydrogen bonding and electrostatic and/or hydrophobic/hydrophilic interactions to provide sensor specificity to gases or liquids. The sensors act as chemiresistor-type sensors.
    Type: Grant
    Filed: August 7, 2018
    Date of Patent: May 17, 2022
    Assignee: The Research Foundation for The State University of New York
    Inventors: Chuan-Jian Zhong, Mark D. Poliks, Benjamin S. Hsiao, Ning Kang, Shan Yan, Jing Li, Shiyao Shan, Jin Luo
  • Publication number: 20220010160
    Abstract: A low temperature sinterable copper nanoparticle or nanowire, comprising gold, zinc, nickel, tin, or aluminum as an alloying metal, and a capping agent. The nanoparticles or nanowires may be deposited on porous or fibrous substrates, the capping agent desorbed, and sintered at low temperature to form conductive traces or sensing elements. The nanoparticles or nanowires may be deposited by aerosol jet, inkjet or dispenser printers, for example.
    Type: Application
    Filed: July 9, 2021
    Publication date: January 13, 2022
    Inventors: Chuan-Jian Zhong, Shan Yan, Shiyao Shan, Ning He, Ning Kang, Jin Luo
  • Publication number: 20190038190
    Abstract: Nanoparticle-fibrous membrane composites are provided as tunable interfacial scaffolds for flexible chemical sensors and biosensors by assembling gold nanoparticles (Au NPs) in a fibrous membrane. The gold nanoparticles are functionalized with organic, polymeric and/or biological molecules. The fibrous membranes may include different filter papers, with one example featuring a multilayered fibrous membrane consisting of a cellulose nanofiber (CN) top layer, an electrospun polyacrylonitrile (PAN) nanofibrous midlayer (or alternate material), and a nonwoven polyethylene terephthalate (PET) fibrous support layer, with the nanoparticles provided on the fibrous membranes through interparticle molecular/polymeric linkages and nanoparticle-nanofibrous interactions. Molecular linkers may be employed to tune hydrogen bonding and electrostatic and/or hydrophobic/hydrophilic interactions to provide sensor specificity to gases or liquids. The sensors act as chemiresistor-type sensors.
    Type: Application
    Filed: August 7, 2018
    Publication date: February 7, 2019
    Inventors: Chuan-Jian Zhong, Mark D. Poliks, Benjamin S. Hsiao, Ning Kang, Shan Yan, Jing Li, Shiyao Shan, Jin Luo