Patents by Inventor Shiying Zhao

Shiying Zhao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11965010
    Abstract: Disclosed are a method for preparing a porcine-derived interferon-delta 5 (pIFN-?5) and an application of the pIFN-?5, where the method for preparing pIFN-?5 includes the following steps: step S1, obtaining a DNA fragment containing pIFN-?5 gene through reverse transcription-polymerase chain reaction (RT-PCR) amplification by using the total RNA of pretreated porcine small intestinal epithelial cells IPEC-J2; step S2, inserting the DNA fragment containing pIFN-?5 gene into an exogenous expression vector to construct a recombinant expression vector for expressing the pIFN-?5 gene; and step S3, introducing the recombinant expression vector into a suitable host cell, and driving the host cell to express the pIFN-?5 gene to obtain the pIFN-?5. The recombinant pIFN-?5 protein is used to prepare drugs or preparations for inhibiting infection of porcine epidemic diarrhea virus (PEDV), porcine transmissible gastroenteritis virus (TGEV), porcine delta coronavirus (PDCoV) and porcine rotavirus (PRoV).
    Type: Grant
    Filed: April 27, 2023
    Date of Patent: April 23, 2024
    Assignee: JIANGSU ACADEMY OF AGRICULTURAL SCIENCES
    Inventors: Baochao Fan, Bin Li, Shiying Song, Xuehan Zhang, Xuejiao Zhu, Jinzhu Zhou, Yongxiang Zhao, Jizong Li, Rongli Guo, Weilu Guo, Xue Zhang
  • Patent number: 7840249
    Abstract: The present invention relates to a method and system (CMCT system) for improving spatial resolution imaging of CT systems. The systems and method can achieve improved spatial resolution while using CT X-ray dosage levels comparable to those currently used in practice. The system and method can be used for micro-tomography and/or micortomosynthesis of a local region and/or volume of interest in a patient head or another body part.
    Type: Grant
    Filed: November 17, 2005
    Date of Patent: November 23, 2010
    Assignee: University of Iowa Research Foundation
    Inventors: Ge Wang, Shiying Zhao
  • Publication number: 20060247513
    Abstract: The present invention relates to a method and system (CMCT system) for improving spatial resolution imaging of CT systems. The systems and method can achieve improved spatial resolution while using CT X-ray dosage levels comparable to those currently used in practice. The system and method can be used for micro-tomography and/or micortomosynthesis of a local region and/or volume of interest in a patient head or another body part.
    Type: Application
    Filed: November 17, 2005
    Publication date: November 2, 2006
    Inventors: Ge Wang, Shiying Zhao
  • Patent number: 7058440
    Abstract: An apparatus for computed tomography (CT) imaging of a cyclically moving organ includes a positional state monitor (24, 40) that monitors a positional state of the cyclically moving organ such as the heart. A cone-beam CT scanner (10) acquires image data at least within a plurality of time windows. Each time window is centered about an occurrence of a selected positional state of the organ. A window analyzer (38) selects a data segment within each time window such that the data segments combine to form a complete data set covering a selected angular range. A reconstruction processor (44) reconstructs the selected data segments into an image representation.
    Type: Grant
    Filed: June 25, 2002
    Date of Patent: June 6, 2006
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Dominic J. Heuscher, Shiying Zhao, David D. Matthews, Ge Wang
  • Publication number: 20030007593
    Abstract: An apparatus for computed tomography (CT) imaging of a cyclically moving organ includes a positional state monitor (24, 40) that monitors a positional state of the cyclically moving organ such as the heart. A cone-beam CT scanner (10) acquires image data at least within a plurality of time windows. Each time window is centered about an occurrence of a selected positional state of the organ. A window analyzer (38) selects a data segment within each time window such that the data segments combine to form a complete data set covering a selected angular range. A reconstruction processor (44) reconstructs the selected data segments into an image representation.
    Type: Application
    Filed: June 25, 2002
    Publication date: January 9, 2003
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Dominic J. Heuscher, Shiying Zhao, David D. Matthews, Ge Wang