Patents by Inventor Sho Hiruta

Sho Hiruta has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10380914
    Abstract: Imaging gloves including wrist cameras and finger cameras are disclosed. An imaging glove includes a wrist portion, a finger portion extending from the wrist portion, a wrist camera coupled to the wrist portion, a finger camera coupled to the finger portion, a processor communicatively coupled to the wrist camera and the finger camera, a memory module communicatively coupled to the processor, and machine readable instructions stored in the memory module. When executed by the processor, the machine readable instructions cause the imaging glove to receive image data from the wrist camera or the finger camera, recognize an object in the received image data, and provide output indicative of the recognized object.
    Type: Grant
    Filed: December 11, 2014
    Date of Patent: August 13, 2019
    Assignee: TOYOTA MOTOR ENGINEERING & MANUFACTURNIG NORTH AMERICA, INC.
    Inventors: Douglas A. Moore, Joseph M. A. Djugash, Yasuhiro Ota, Shin Sano, Sarah Rosenbach, Sho Hiruta, Maura Hoven
  • Patent number: 9870718
    Abstract: Imaging devices including spacing members and imaging devices including tactile feedback devices are disclosed. An imaging device includes a body portion, a spacing member, and a camera. The body portion extends in a lengthwise direction from a distal end of the body portion to an imaging end of the body portion. The spacing member extends from the imaging end of the body portion in the lengthwise direction. The camera is coupled to the imaging end of the body portion. When the spacing member of the imaging device is positioned in contact with a surface to be imaged by the camera and the imaging device is moved across the surface, the spacing member maintains a fixed distance between the camera and the surface as the imaging device moves across the surface to be imaged. Imaging devices including tactile feedback devices that are activated when text is recognized are also disclosed.
    Type: Grant
    Filed: December 11, 2014
    Date of Patent: January 16, 2018
    Assignee: TOYOTA MOTOR ENGINEERING & MANUFACTURING NORTH AMERICA, INC.
    Inventors: Douglas A. Moore, Joseph M. A. Djugash, Yasuhiro Ota, Shin Sano, Sarah Rosenbach, Sho Hiruta, Maura Hoven
  • Patent number: 9530058
    Abstract: In one embodiment, a visual-assist robot includes a housing defining a base portion, an imaging assembly, a motorized wheel assembly positioned at the lower surface of the base portion, a processor disposed within the housing and communicatively coupled to the imaging assembly and the motorized wheel assembly, and a non-transitory memory device disposed within the housing. The imaging assembly generates image data corresponding to an environment, and at least a portion of the imaging assembly is configured to be disposed above the upper surface of the base portion. The non-transitory memory device stores machine-readable instructions that cause the processor to provide a drive signal to the motorized wheel assembly such that the motorized wheel assembly moves the visual-assist robot to a desired location within the environment, determine objects from the image data received from the imaging assembly, and transmit message data for receipt by a user.
    Type: Grant
    Filed: December 11, 2014
    Date of Patent: December 27, 2016
    Assignee: TOYOTA MOTOR ENGINEERING & MANUFACTURING NORTH AMERICA, INC.
    Inventors: Douglas A. Moore, Joseph M. A. Djugash, Yasuhiro Ota, Shin Sano, Sarah Rosenbach, Sho Hiruta, Maura Hoven
  • Publication number: 20160170508
    Abstract: Embodiments of tactile display devices are disclosed. In one embodiment, a tactile display device includes a housing having a first surface, a tactile display located at the first surface, a camera, a processor, and a non-transitory memory device. The tactile display is configured to produce a plurality of raised portions defining a tactile message. The camera generates image data corresponding to an environment. The processor is disposed within the housing and communicatively coupled to the tactile display and the camera. The non-transitory memory device stores machine-readable instructions that, when executed by the processor, cause the processor to, generate a topographical map of objects within the environment from the image data received from the camera, generate tactile display data corresponding to the topographical map, and provide the tactile display data to the tactile display such that the tactile display produces the plurality of raised portions to form the tactile message.
    Type: Application
    Filed: December 11, 2014
    Publication date: June 16, 2016
    Applicant: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventors: Douglas A. Moore, Joseph M.A. Djugash, Yasuhiro Ota, Shin Sano, Sarah Rosenbach, Sho Hiruta, Maura Hoven
  • Publication number: 20160171907
    Abstract: Imaging gloves including wrist cameras and finger cameras are disclosed. An imaging glove includes a wrist portion, a finger portion extending from the wrist portion, a wrist camera coupled to the wrist portion, a finger camera coupled to the finger portion, a processor communicatively coupled to the wrist camera and the finger camera, a memory module communicatively coupled to the processor, and machine readable instructions stored in the memory module. When executed by the processor, the machine readable instructions cause the imaging glove to receive image data from the wrist camera or the finger camera, recognize an object in the received image data, and provide output indicative of the recognized object.
    Type: Application
    Filed: December 11, 2014
    Publication date: June 16, 2016
    Applicant: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventors: Douglas A. Moore, Joseph M.A. Djugash, Yasuhiro Ota, Shin Sano, Sarah Rosenbach, Sho Hiruta, Maura Hoven
  • Publication number: 20160171303
    Abstract: In one embodiment, a visual-assist robot includes a housing defining a base portion, an imaging assembly, a motorized wheel assembly positioned at the lower surface of the base portion, a processor disposed within the housing and communicatively coupled to the imaging assembly and the motorized wheel assembly, and a non-transitory memory device disposed within the housing. The imaging assembly generates image data corresponding to an environment, and at least a portion of the imaging assembly is configured to be disposed above the upper surface of the base portion. The non-transitory memory device stores machine-readable instructions that cause the processor to provide a drive signal to the motorized wheel assembly such that the motorized wheel assembly moves the visual-assist robot to a desired location within the environment, determine objects from the image data received from the imaging assembly, and transmit message data for receipt by a user.
    Type: Application
    Filed: December 11, 2014
    Publication date: June 16, 2016
    Applicant: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventors: Douglas A. Moore, Joseph M.A. Djugash, Yasuhiro Ota, Shin Sano, Sarah Rosenbach, Sho Hiruta, Maura Hoven
  • Publication number: 20160171908
    Abstract: Imaging devices including spacing members and imaging devices including tactile feedback devices are disclosed. An imaging device includes a body portion, a spacing member, and a camera. The body portion extends in a lengthwise direction from a distal end of the body portion to an imaging end of the body portion. The spacing member extends from the imaging end of the body portion in the lengthwise direction. The camera is coupled to the imaging end of the body portion. When the spacing member of the imaging device is positioned in contact with a surface to be imaged by the camera and the imaging device is moved across the surface, the spacing member maintains a fixed distance between the camera and the surface as the imaging device moves across the surface to be imaged. Imaging devices including tactile feedback devices that are activated when text is recognized are also disclosed.
    Type: Application
    Filed: December 11, 2014
    Publication date: June 16, 2016
    Applicant: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventors: Douglas A. Moore, Joseph M.A. Djugash, Yasuhiro Ota, Shin Sano, Sarah Rosenbach, Sho Hiruta, Maura Hoven