Patents by Inventor Sho Kato

Sho Kato has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20090142908
    Abstract: A photoelectric conversion device having an excellent photoelectric conversion characteristic is provided while effectively utilizing limited resources. A fragile layer is formed in a region at a depth of less than 1000 nm from one surface of a single crystal semiconductor substrate, and a first impurity semiconductor layer, a first electrode, and an insulating layer are formed on the one surface side of the single crystal semiconductor substrate. After bonding the insulating layer to a supporting substrate, the single crystal semiconductor substrate is separated with the fragile layer or its vicinity used as a separation plane, thereby forming a first single crystal semiconductor layer over the supporting substrate.
    Type: Application
    Filed: November 26, 2008
    Publication date: June 4, 2009
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Fumito Isaka, Sho Kato, Kosei Nei, Ryu Komatsu, Akihisa Shimomura, Koji Dairiki
  • Publication number: 20090142879
    Abstract: A fragile layer is formed in a region at a depth of less than 1000 nm from one surface of a single crystal semiconductor substrate, and a first impurity semiconductor layer and a first electrode are formed at the one surface side. After bonding the first electrode and a supporting substrate, the single crystal semiconductor substrate is separated using the fragile layer or the vicinity as a separation plane, thereby forming a first single crystal semiconductor layer over the supporting substrate. An amorphous semiconductor layer is formed on the first single crystal semiconductor layer, and a second single crystal semiconductor layer is formed by heat treatment for solid phase growth of the amorphous semiconductor layer. A second impurity semiconductor layer having a conductivity type opposite to that of the first impurity semiconductor layer and a second electrode are formed over the second single crystal semiconductor layer.
    Type: Application
    Filed: November 26, 2008
    Publication date: June 4, 2009
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Fumito ISAKA, Sho Kato, Koji Dairiki
  • Publication number: 20080217563
    Abstract: The present invention is a semiconductor manufacturing apparatus by which an impurity can be introduced into an active layer at a low and a stable concentration in order to form semiconductor elements that have little variation in threshold voltage. In the semiconductor manufacturing apparatus that includes a washing unit; an impurity introduction unit used to attach the impurity to the surface of the semiconductor film; a laser crystallization unit used to crystallize the semiconductor film to which an impurity has been attached; and transfer robots, the amount of the impurity attached to the semiconductor film is controlled by the length of time of exposure of the substrate in the impurity introduction unit, and the semiconductor film is crystallized while a crystalline semiconductor film that contains an impurity at low concentration is formed simultaneously by laser crystallization.
    Type: Application
    Filed: March 3, 2008
    Publication date: September 11, 2008
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Sho KATO, Hidekazu MIYAIRI, Akihisa SHIMOMURA
  • Publication number: 20080206967
    Abstract: A thin semiconductor film is crystallized in a high yield by being irradiated with laser light. An insulating film, a semiconductor film, an insulating film, and a semiconductor film are stacked in this order over a substrate. Laser light irradiation is performed from above the substrate to melt the semiconductor films of a lower layer and an upper layer, whereby the semiconductor film of the lower layer is crystallized. With the laser light irradiation, the semiconductor film of the upper layer changes to a liquid state, thereby reflecting the laser light and preventing the semiconductor film of the lower layer from being overheated with the laser light. Further, by melting the semiconductor film of the upper layer as well, time for melting the semiconductor film of the lower layer can be extended.
    Type: Application
    Filed: February 19, 2008
    Publication date: August 28, 2008
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Hidekazu MIYAIRI, Sho KATO