Patents by Inventor Shobha Singh

Shobha Singh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7555548
    Abstract: A method and apparatuses are provided for data collection from network elements in a network. A collector sends a data request to one of the network elements. The collector determines whether a condition exists regarding the network element. When the collector determines that the condition exists, the collector stops the data collection from the network element without affecting the data collection by the collector from other network elements, the data collection remains stopped until the collector is notified that the condition no longer exists, and the collector sends a message to the validator to inform the validator of the condition. In another aspect, a validator is informed of a configuration change of one of a group of network elements. The validator requests at least a portion of configuration information of the network element, determines optimum configuration parameters for data collection, and sends the optimum configuration parameters to a collector.
    Type: Grant
    Filed: April 7, 2004
    Date of Patent: June 30, 2009
    Assignee: Verizon Business Global LLC
    Inventors: Colin P. Winfield, Hubert R. Sieh, Ramin Ali Dousti, Teh Pao Liu, Shobha Singh, Hewad Benawa
  • Publication number: 20050228885
    Abstract: A method and apparatuses are provided for data collection from network elements in a network. A collector sends a data request to one of the network elements. The collector determines whether a condition exists regarding the network element. When the collector determines that the condition exists, the collector stops the data collection from the network element without affecting the data collection by the collector from other network elements, the data collection remains stopped until the collector is notified that the condition no longer exists, and the collector sends a message to the validator to inform the validator of the condition. In another aspect, a validator is informed of a configuration change of one of a group of network elements. The validator requests at least a portion of configuration information of the network element, determines optimum configuration parameters for data collection, and sends the optimum configuration parameters to a collector.
    Type: Application
    Filed: April 7, 2004
    Publication date: October 13, 2005
    Inventors: Colin Winfield, Hubert Sieh, Ramin Dousti, Teh Liu, Shobha Singh, Hewad Benawa
  • Patent number: 6154598
    Abstract: An optical waveguide laser, preferably a fiber laser, has unintentionally incorporated impurities disposed in the lasing medium which upconvert a portion of the lasing radiation to radiation of shorter wavelength, thereby introducing defects in the medium which result in increased absorption due to photodarkening. Suitable rare-earth co-dopants are intentionally incorporated during the manufacture of the fiber for effectively shunting the upconversion process. The lifetime of the fiber laser is thereby increased.
    Type: Grant
    Filed: December 22, 1997
    Date of Patent: November 28, 2000
    Assignee: Polaroid Corporation
    Inventors: Pavle Gavrilovic, Anish K. Goyal, Hong Po, Shobha Singh
  • Patent number: 5388114
    Abstract: A diode-pumped monolithic laser is fabricated from a self-doubling host material co-doped with two ionic species, where one ionic dopant converts pump radiation to continuous radiation at a fundamental frequency and the other dopant acts as a saturable absorber to Q-switch the fundamental radiation which is then frequency doubled to produce pulsed high-intensity green light, the green light being either outputted or further frequency-doubled, into pulsed coherent UV radiation, by means of a non-linear crystal.
    Type: Grant
    Filed: March 17, 1994
    Date of Patent: February 7, 1995
    Assignee: Polaroid Corporation
    Inventors: Joseph H. Zarrabi, Shobha Singh, Pavle Gavrilovic
  • Patent number: 5295146
    Abstract: Novel solid state gain mediums provide monolithic lasers with short cavity lengths and with the ability to efficiently lase in the lowest order TEM.sub.00 mode. Unoptimized optical power conversion efficiency of 35% has been achieved with the novel solid state gain mediums in monolithic lasers that have a cavity length as short as 0.5 mm. With proper values for the output mirror reflectivity and low loss host crystals, the optical power conversion efficiency is approximately 50%. Moreover, when in optical contact with a frequency doubling optically non linear crystal, the novel solid state gain mediums in the monolithic lasers can produce coherent visible light.
    Type: Grant
    Filed: June 11, 1993
    Date of Patent: March 15, 1994
    Assignee: Polaroid Corporation
    Inventors: Pavle Gavrilovic, Shobha Singh
  • Patent number: 5280534
    Abstract: A crystalline material for use in a solid state tunable laser is YAG:Mn wherein the Mn is predominantly trivalent. The laser is tunable in the yellow-orange range (0.59-0.63 .mu.m) and the near infrared range (1.04-1.2 .mu.m).
    Type: Grant
    Filed: February 25, 1993
    Date of Patent: January 18, 1994
    Assignee: Polaroid Corporation
    Inventors: Pavle Gavrilovic, Shobha Singh
  • Patent number: 5166948
    Abstract: An up converting method and apparatus includes a crystalline structure responsive to light emitted from pump light for producing visible and/or ultraviolet light therefrom which is of a shorter wavelength than the pump light. This crystalline structure comprises a composition containing active ions of trivalent rare earth elements and a host material of either anhydrous rare earth halides or rare earth oxysulfides. This crystalline structure is represented by the atomic formula M.sub.(1-x) R.sub.x Z.sub.3 or M.sub.2(1-x) R.sub.2x O.sub.2 S where M comprises at least one rare earth element selected from the group comprising cerium, gadolinium, yttrium, lanthanum, and mixtures thereof, R is a dopant selected from the group comprising neodymium, thulium, erbium, holmium, samarium, and mixtures thereof, x is a value in the range from 0.005 to 1.0, and Z is a halogen selected from the group comprising chlorine, bromine, and iodine.
    Type: Grant
    Filed: June 19, 1991
    Date of Patent: November 24, 1992
    Assignee: Polaroid Corporation
    Inventors: Pavle Gavrilovic, Shobha Singh
  • Patent number: 5047369
    Abstract: This invention is directed to a process of producing semiconductor devices which involves deposition of protective glass layers by a particle beam technique from targets of phosphosilicate glass, as well as a process for production of such targets. The phosphosilicate glass containing 1-15 mole percent P.sub.2 O.sub.5 is produced by a sol/gel technique which involves mixing of a fumed silica, with a surface area of 50-400 m.sup.2 /g, preferably about 200 m.sup.2 /g, with phosphoric acid and water to form a sol with 20-55 wt. % silica, allowing it to gel, drying at ambient conditions, dehydrating at about 650.degree. C. in an atmosphere of an inert gas and chlorine and fluorine containing gases, heating up at a certain rate of from 100.degree. to 180.degree. C. per hour to a peak sintering temperature below 1200.degree. C. and cooling so as to produce amorphous and transparent glass suitable for use as a target. The glass layers are highly advantageous as encapsulating layers, diffusion barrier layers, etc.
    Type: Grant
    Filed: May 1, 1989
    Date of Patent: September 10, 1991
    Assignee: AT&T Bell Laboratories
    Inventors: Debra A. Fleming, David W. Johnson, Jr., Shobha Singh, LeGrand G. VanUitert, George J. Zydzik
  • Patent number: 5011794
    Abstract: This invention is directed to the fabrication of semiconductor devices, especially those comprising III-V and II-VI compound semiconductor materials, and involves Rapid Thermal Annealing (RTA) of semiconductor wafers, especially those implanted with a dopant(s). The invention is also concerned with a black-box implement used in combination with the RTA. The process includes enclosing a wafer to be annealed within a "black-box" comprising components of a black body material and subjecting the black box with the wafer therein to an RTA.
    Type: Grant
    Filed: May 1, 1989
    Date of Patent: April 30, 1991
    Assignee: AT&T Bell Laboratories
    Inventors: Karen A. Grim, Shobha Singh, LeGrand G. Van Uitert, George J. Zydzik
  • Patent number: 4738934
    Abstract: Epitaxial layers of semi-insulating InP grown by MOCVD on conducting InP wafers make excellent substrates for III-V semiconductor devices. Particularly appealing is the low defect density obtained because of the conducting InP wafers and excellent insulating characteristics of the semi-insulating InP layer. The invention is a procedure for doping the insulating layer by ion implantation. Such a procedure is unusually advantageous for fabricating a variety of devices including MISFETs, MESFETs and JFETs.
    Type: Grant
    Filed: May 16, 1986
    Date of Patent: April 19, 1988
    Assignee: American Telephone and Telegraph Company, AT&T Bell Laboratories
    Inventors: Wilbur D. Johnston, Jr., Judith A. Long, Albert T. Macrander, Bertram Schwartz, Shobha Singh
  • Patent number: 4731293
    Abstract: A fabrication technique is described for making various devices in which a type of glass is used as a surface protection layer. The glass layers are put down by particle bombardment (generally sputtering or e-beam bombardment) of a phosphorus-containing silicate glass target. Devices with such layers are also described. Such glass layers are highly advantageous as encapsulating material, diffusion barrier layers, etc., particularly for optical type devices and certain semiconductor devices. Particularly important is the preparation procedure for the glass target used in the bombardment process. The glass layers are moisture stable, act as excellent barriers against diffusion, and are usable up to quite high temperatures without cracking or peeling. The glass layers also provide long-term protection against atmosphere components including water vapor, oxygen, atmosphere pollution contaminants, etc.
    Type: Grant
    Filed: June 20, 1986
    Date of Patent: March 15, 1988
    Assignee: American Telephone and Telegraph Company, AT&T Bell Laboratories
    Inventors: David T. Ekholm, William H. Grodkiewicz, Bertram Schwartz, Shobha Singh, LeGrand G. Van Uitert, George J. Zydzik
  • Patent number: 4634474
    Abstract: Proposed is a method of fabricating III-V and II-VI compound semiconductors and a resulting product where there is formed on the surface a coating which can function as a diffusion mask and/or a passivation layer. The coating is a silicon layer deposited by a method which does not damage the semiconductor surface.
    Type: Grant
    Filed: October 9, 1984
    Date of Patent: January 6, 1987
    Assignee: AT&T Bell Laboratories
    Inventors: Irfan Camlibel, Aland K. Chin, Shobha Singh, LeGrand G. Van Uitert, George J. Zydzik
  • Patent number: 4617192
    Abstract: The invention is a process for putting down coatings of aluminum oxide on optical surfaces using electron-beam deposition in an oxygen-enriched atmosphere. Particularly good results are obtained when oxygen is flowed over or directed at the surface to be coated. Such coatings have extremely low losses compared to many conventional optical coatings and are particularly useful for anti-reflection coatings on various devices. In particular, for optical devices with indium phosphide surfaces operating at wavelengths near 1.3 .mu.m, the optical properties of aluminum oxide coatings are near optimum for anti-reflection coatings and the thermal expansion characteristics are a close match to those of indium phosphide.
    Type: Grant
    Filed: February 28, 1985
    Date of Patent: October 14, 1986
    Assignee: AT&T Bell Laboratories
    Inventors: Aland K. Chin, Shobha Singh, LeGrand G. V. Uitert, George J. Zydzik
  • Patent number: 4502898
    Abstract: A process is described for doping compound semiconductors using a metal fluoride (e.g., ZnF.sub.2) as the source of dopant. The anhydrous metal fluoride is put down on the surface of the compound semiconductor, capped with a suitable encapsulant and heat treated to promote the diffusion. The heat treatment can be carried out in air without danger of surface damage to the compound semiconductor. Also, the diffusion is better controlled as to depth of diffusion and boundary delineation.
    Type: Grant
    Filed: December 21, 1983
    Date of Patent: March 5, 1985
    Assignee: AT&T Bell Laboratories
    Inventors: Irfan Camlibel, Howard J. Guggenheim, Shobha Singh, LeGrand G. Van Uitert, George J. Zydzik
  • Patent number: 4455351
    Abstract: A process is described for fabricating various optical devices including photodiodes in which a protective dielectric layer is put down on the surface of the device prior to heating to temperatures over about 250-300 degrees C. Such devices have excellent performance characteristics including low dark current and low noise figures.
    Type: Grant
    Filed: June 13, 1983
    Date of Patent: June 19, 1984
    Assignee: AT&T Bell Laboratories
    Inventors: Irfan Camlibel, Shobha Singh, LeGrand G. Van Uitert, John R. Zuber, George J. Zydzik
  • Patent number: 4407061
    Abstract: A fabrication technique is described for making various devices in which a certain type of glass is used as a surface protection layer. The glass layers are formed by particle bombardment (generally sputtering or E-beam) of a glass target. Devices with such surface layers are also described. Such glass layers are highly advantageous as encapsulating layers, diffusion barrier layers, etc., particularly for optical type devices and certain semiconductor devices. Particularly important is the preparation procedure for the glass target used in the bombardment process. The glass layers are moisture stable, act as excellent barriers against diffusion, and are usable up to quite high temperatures (i.e., in diffusion doping procedures) without cracking or peeling. The glass layers also provide long-term protection against atmosphere components including water vapor, oxygen, atmosphere pollution contaminants, etc., and can be removed by standard etching techniques.
    Type: Grant
    Filed: June 4, 1981
    Date of Patent: October 4, 1983
    Assignee: Bell Telephone Laboratories, Incorporated
    Inventors: William H. Grodkiewicz, Shobha Singh, LeGrand G. Van Uitert
  • Patent number: 4374391
    Abstract: A fabrication technique is described for making various devices in which a type of glass is used as a surface protection layer. The glass layers are put down by particle bombardment (generally sputtering) of a borosilicate glass target. Devices with such surface layers are also described. Such glass layers are highly advantageous as encapsulating material, diffusion barrier layers, etc., particularly for optical type devices and certain semiconductor devices. Particularly important is the preparation procedure for the glass target used in the bombardment process. The glass layers are moisture stable, act as excellent barriers against diffusion, and are usable up to quite high temperatures without cracking or peeling. The glass layers also provide long-term protection against atmosphere components including water vapor, oxygen, atmosphere pollution contaminants, etc.
    Type: Grant
    Filed: September 24, 1980
    Date of Patent: February 15, 1983
    Assignee: Bell Telephone Laboratories, Incorporated
    Inventors: Irfan Camlibel, Shobha Singh, LeGrand G. Van Uitert
  • Patent number: 4332440
    Abstract: Display devices are described in which certain structural features prevent cross-talk effects between individual display elements. This ensures sharp delineation between individual display elements which promotes high contrast and sharp displays. These structural features are particularly advantageous for multiplexed display systems so as to simplify circuit arrangements and ensure sharp, high-contrast displays.
    Type: Grant
    Filed: March 17, 1980
    Date of Patent: June 1, 1982
    Assignee: Bell Telephone Laboratories, Incorporated
    Inventors: Mauro DiDomenico, Jr., Shobha Singh, LeGrand G. Van Uitert
  • Patent number: 4309460
    Abstract: A process is described for producing devices and articles with gold films made by gold evaporation in which certain fluoride compounds are used to insure good adhesion of the gold film to the substrate. The process is particularly applicable to the production of gold films on non-metallic surfaces such as ceramic and glass surfaces. This procedure not only insures better adhesion of the gold film to the surface, but also permits greater processing variations without adversely affecting film adhesion.
    Type: Grant
    Filed: October 14, 1980
    Date of Patent: January 5, 1982
    Assignee: Bell Telephone Laboratories, Incorporated
    Inventors: Shobha Singh, LeGrand G. Van Uitert, George J. Zydzik
  • Patent number: 4309081
    Abstract: Display devices are described which contain organic quinones or diones as active material. These devices exhibit high optical contrast, pleasing and striking colors and unusually low power consumption. Particularly advantageous is the fact that these display devices may exhibit non-linear behavior (sharp thresholds) which permit multiplexing. This is highly advantageous in display device applications.
    Type: Grant
    Filed: May 29, 1979
    Date of Patent: January 5, 1982
    Assignee: Bell Telephone Laboratories, Incorporated
    Inventors: Irfan Camlibel, Shobha Singh, LeGrand G. Van Uitert, George J. Zydzik