Patents by Inventor Shogo Tagawa

Shogo Tagawa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9737883
    Abstract: A hydrotreating catalyst includes a hydrogenation active metal supported on a alumina-phosphorus support and satisfies: a specific surface area being 100 m2/g or more; a total pore volume measured by mercury intrusion being in a range 0.80-1.50 ml/g; a maximum value of pore distribution being present in a pore diameter range 10-30 nm; a ratio of a pore volume of pores with a pore diameter within a range of ±2 nm of a pore diameter at the maximum value to a pore volume of pores with a pore diameter in a range 5-100 nm being 0.40 or less; a pressure capacity being 10 N/mm or more; 0.4-10.0 mass % of phosphorus being contained in the catalyst in terms of P2O5 concentration based on a total amount of the catalyst; and a hydrogenation active metal being at least one metal selected from metals of VIA and VIII groups of the periodic table.
    Type: Grant
    Filed: October 22, 2012
    Date of Patent: August 22, 2017
    Assignee: JGC CATALYSIS AND CHEMICALS LTD.
    Inventors: Kenji Yamane, Kouichi Ohama, Shogo Tagawa
  • Patent number: 9067191
    Abstract: The present invention provides a hydrodesulfurization catalyst that exhibits a high desulfurization activity when used in hydrotreatment of hydrocarbon oil, in particular straight-run gas oil. The catalyst includes at least one type of metal component selected from Groups VIA and VIII in the periodic table, supported on a silica-titania-alumina support where the total of the diffraction peak area indicating the crystal structure of anatase titania (101) planes and the diffraction peak area indicating the crystal structure of rutile titania (110) planes is ¼ or less of the diffraction peak area indicating the aluminum crystal structure ascribed to ?-alumina (400) planes, as measured by X-ray diffraction analysis. The catalyst has (a) a specific surface area (SA) of 150 m2/g or greater, (b) a total pore volume (PVo) of 0.
    Type: Grant
    Filed: September 14, 2010
    Date of Patent: June 30, 2015
    Assignees: JX Nippon Oil & Energy Corporation, JGC Catalysts and Chemicals Ltd.
    Inventors: Hiroyuki Seki, Yoshiaki Fukui, Masanori Yoshida, Shogo Tagawa, Tomoyasu Kagawa
  • Patent number: 9061265
    Abstract: A hydrodesulfurization catalyst is produced by pre-sulfurizing a hydrodesulfurization catalyst Y including a support containing silica, alumina and titania and at least one metal component supported thereon and selected from VIA and VIII groups of the periodic table (comprising at least Mo), in which the total area of the diffraction peak area indicating the crystal structure of anatase titania (101) planes and the diffraction peak area indicating the crystal structure of rutile titania (110) planes in the support, measured by X-ray diffraction analysis being ¼ or less of the alumina diffraction peak area assigned to ?-alumina (400) planes. The molybdenum is formed into molybdenum disulfide crystal disposed in layers on the support by the pre-sulfurization, and having an average length of longer than 3.5 nm and 7 nm or shorter in the plane direction and an average number of laminated layers of more than 1.0 and 1.9 or fewer.
    Type: Grant
    Filed: June 21, 2011
    Date of Patent: June 23, 2015
    Assignees: JX Nippon Oil & Energy Corporation, JGC Catalysts and Chemicals Ltd.
    Inventors: Hiroyuki Seki, Masanori Yoshida, Shogo Tagawa, Tomoyasu Kagawa
  • Publication number: 20140243192
    Abstract: A hydrotreating catalyst includes a hydrogenation active metal supported on a alumina-phosphorus support and satisfies: a specific surface area being 100 m2/g or more; a total pore volume measured by mercury intrusion being in a range 0.80-1.50 ml/g; a maximum value of pore distribution being present in a pore diameter range 10-30 nm; a ratio of a pore volume of pores with a pore diameter within a range of ±2 nm of a pore diameter at the maximum value to a pore volume of pores with a pore diameter in a range 5-100 nm being 0.40 or less; a pressure capacity being 10 N/mm or more; 0.4-10.0 mass % of phosphorus being contained in the catalyst in terms of P2O5 concentration based on a total amount of the catalyst; and a hydrogenation active metal being at least one metal selected from metals of VIA and VIII groups of the periodic table.
    Type: Application
    Filed: October 22, 2012
    Publication date: August 28, 2014
    Inventors: Kenji Yamane, Kouichi Ohama, Shogo Tagawa
  • Publication number: 20130153467
    Abstract: A hydrodesulfurization catalyst is produced by pre-sulfurizing a hydrodesulfurization catalyst Y including a support containing silica, alumina and titania and at least one metal component supported thereon and selected from VIA and VIII groups of the periodic table (comprising at least Mo), in which the total area of the diffraction peak area indicating the crystal structure of anatase titania (101) planes and the diffraction peak area indicating the crystal structure of rutile titania (110) planes in the support, measured by X-ray diffraction analysis being ¼ or less of the alumina diffraction peak area assigned to ?-alumina (400) planes. The molybdenum is formed into molybdenum disulfide crystal disposed in layers on the support by the pre-sulfurization, and having an average length of longer than 3.5 nm and 7 nm or shorter in the plane direction and an average number of laminated layers of more than 1.0 and 1.9 or fewer.
    Type: Application
    Filed: June 21, 2011
    Publication date: June 20, 2013
    Applicants: JGC CATALYSTS AND CHEMICALS LTD., JX NIPPON OIL & ENERGY CORPORATION
    Inventors: Hiroyuki Seki, Masanori Yoshida, Shogo Tagawa, Tomoyasu Kagawa
  • Publication number: 20120181219
    Abstract: The present invention provides a hydrodesulfurization catalyst that exhibits a high desulfurization activity when used in hydrotreatment of hydrocarbon oil, in particular straight-run gas oil. The catalyst includes at least one type of metal component selected from Groups VIA and VIII in the periodic table, supported on a silica-titania-alumina support where the total of the diffraction peak area indicating the crystal structure of anatase titania (101) planes and the diffraction peak area indicating the crystal structure of rutile titania (110) planes is ¼ or less of the diffraction peak area indicating the aluminum crystal structure ascribed to ?-alumina (400) planes, as measured by X-ray diffraction analysis. The catalyst has (a) a specific surface area (SA) of 150 m2/g or greater, (b) a total pore volume (PVo) of 0.
    Type: Application
    Filed: September 14, 2010
    Publication date: July 19, 2012
    Applicants: JGC CATALYSTS AND CHEMICALS LTD., JX NIPPON OIL & ENERGY CORPORATION
    Inventors: Hiroyuki Seki, Yoshiaki Fukui, Masanori Yoshida, Shogo Tagawa, Tomoyasu Kagawa