Patents by Inventor Shogo TERATANI

Shogo TERATANI has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11806660
    Abstract: Carbon dioxide gas in a high-pressure gas to be treated is stably separated using a separation membrane. Upon separating carbon dioxide gas in a high-pressure gas to be treated using a separation membrane module including a separation membrane, a preliminary boosted gas is supplied to the separation membrane module before the supply of natural gas is started to boost a pressure on a primary side of the separation membrane to a preliminary pressure between a stand-by pressure and an operating pressure. Thus, when the supply of a high-pressure gas to be treated is started to increase the pressure of the separation membrane module to an operating pressure, an abrupt decrease in temperature of the gas to be treated can be suppressed.
    Type: Grant
    Filed: January 29, 2019
    Date of Patent: November 7, 2023
    Assignee: JGC Corporation
    Inventors: Shogo Teratani, Syuichi Oguro, Hiroaki Hasegawa, Junya Okazaki
  • Patent number: 11801478
    Abstract: To regenerate, by a simple method, an inorganic separation membrane separating non-hydrocarbon gas contained in treatment target gas. Provided in separating the non-hydrocarbon gas contained in the treatment target gas is a regeneration gas supply path supplying moisture-containing regeneration gas to a primary side of the inorganic separation membrane in a separation membrane module. As a result, it is possible to regenerate the inorganic separation membrane by supplying moisture-containing CO2 gas to the inorganic separation membrane and then supplying dry natural gas. Accordingly, there is no need to use dry regeneration gas and the CO2 gas supplied via, for example, a pipeline can be used as it is.
    Type: Grant
    Filed: December 25, 2018
    Date of Patent: October 31, 2023
    Assignee: JGC Corporation
    Inventors: Hiroaki Hasegawa, Syuichi Oguro, Shogo Teratani, Junya Okazaki, Mizuki Takeuchi
  • Patent number: 11275053
    Abstract: A method identifies the molecular structure of each component in a multicomponent mixture. The method includes (1) subjecting the multicomponent mixture to mass spectrometry to identify the formula of a molecule attributed to each obtained peak, and to identify abundance of the molecule; (2) subjecting the multicomponent mixture to collision induced dissociation; (3) performing mass spectrometry on each fragment ion generated via the collision induced dissociation in (2) to identify the core structure forming each fragment ion and abundance thereof; (4) dividing the molecules attributed to each peak in (1) into “classes” based on “a type and number of heteroatoms, and a DBE value”, and on all the molecules belonging to each “class”, estimating the existence state and abundance thereof; and (5) determining the core structure forming each molecule, for which the existence state is estimated in (4), and determining and assigning a side chain and a cross-link thereto.
    Type: Grant
    Filed: March 27, 2018
    Date of Patent: March 15, 2022
    Assignees: JAPAN PETROLEUM ENERGY CENTER, ENEOS Corporation, IDEMITSU KOSAN CO., LTD., COSMO OIL CO., LTD.
    Inventors: Teruo Suzuki, Keita Katano, Ryuzo Tanaka, Shogo Teratani
  • Publication number: 20220054973
    Abstract: Carbon dioxide gas in a high-pressure gas to be treated is stably separated using a separation membrane. Upon separating carbon dioxide gas in a high-pressure gas to be treated using a separation membrane module including a separation membrane, a preliminary boosted gas is supplied to the separation membrane module before the supply of natural gas is started to boost a pressure on a primary side of the separation membrane to a preliminary pressure between a stand-by pressure and an operating pressure. Thus, when the supply of a high-pressure gas to be treated is started to increase the pressure of the separation membrane module to an operating pressure, an abrupt decrease in temperature of the gas to be treated can be suppressed.
    Type: Application
    Filed: January 29, 2019
    Publication date: February 24, 2022
    Inventors: Shogo TERATANI, Syuichi OGURO, Hiroaki HASEGAWA, Junya OKAZAKI
  • Publication number: 20210316254
    Abstract: To regenerate, by a simple method, an inorganic separation membrane separating non-hydrocarbon gas contained in treatment target gas. Provided in separating the non-hydrocarbon gas contained in the treatment target gas is a regeneration gas supply path supplying moisture-containing regeneration gas to a primary side of the inorganic separation membrane in a separation membrane module. As a result, it is possible to regenerate the inorganic separation membrane by supplying moisture-containing CO2 gas to the inorganic separation membrane and then supplying dry natural gas. Accordingly, there is no need to use dry regeneration gas and the CO2 gas supplied via, for example, a pipeline can be used as it is.
    Type: Application
    Filed: December 25, 2018
    Publication date: October 14, 2021
    Inventors: Hiroaki HASEGAWA, Syuichi OGURO, Shogo TERATANI, Junya OKAZAKI, Mizuki TAKEUCHI
  • Publication number: 20190353616
    Abstract: A method identifies the molecular structure of each component in a multicomponent mixture. The method includes (1) subjecting the multicomponent mixture to mass spectrometry to identify the formula of a molecule attributed to each obtained peak, and to identify abundance of the molecule; (2) subjecting the multicomponent mixture to collision induced dissociation; (3) performing mass spectrometry on each fragment ion generated via the collision induced dissociation in (2) to identify the core structure forming each fragment ion and abundance thereof; (4) dividing the molecules attributed to each peak in (1) into “classes” based on “a type and number of heteroatoms, and a DBE value”, and on all the molecules belonging to each “class”, estimating the existence state and abundance thereof; and (5) determining the core structure forming each molecule, for which the existence state is estimated in (4), and determining and assigning a side chain and a cross-link thereto.
    Type: Application
    Filed: March 27, 2018
    Publication date: November 21, 2019
    Applicants: JAPAN PETROLEUM ENERGY CENTER, JXTG NIPPON OIL & ENERGY CORPORATION, IDEMITSU KOSAN CO., LTD., COSMO OIL CO., LTD.
    Inventors: Teruo SUZUKI, Keita KATANO, Ryuzo TANAKA, Shogo TERATANI