Patents by Inventor Shohei Yamamura

Shohei Yamamura has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240091771
    Abstract: An assay device and an assay method are each capable of ensuring the accuracy of a target substance detection section.
    Type: Application
    Filed: September 17, 2021
    Publication date: March 21, 2024
    Inventors: Yusuke FUCHIWAKI, Masato TANAKA, Shohei YAMAMURA, Naoki MORISHITA, Kumiko KAMIYA, Seiichiro MATSUZAKI
  • Publication number: 20220026424
    Abstract: In order to provide a specific solution for producing a microstructure equipped with a mechanism for selectively detecting a marker molecule expressed by a target cell, or a specific biomolecule, and for detecting and identifying a molecule to be detected using the microstructure, the present invention provides a nearly hemispherical shell-shaped structure made of a first conductive material, and an electrode layer made of a second conductive material disposed on the concave side of the nearly hemispherical shell-shaped structure, wherein the first conductive material includes a magnetic material and the second conductive material includes an electrode material, and the size (diameter) of the cavity surrounded by the electrode layer on the concave side of the nearly hemispherical shell-shaped structure is in the range of about 10 nm to about 50 ?m.
    Type: Application
    Filed: February 26, 2020
    Publication date: January 27, 2022
    Inventors: Hyonchol KIM, Dai KATO, Naoshi KOJIMA, Shohei YAMAMURA, Tomoyuki KAMATA
  • Patent number: 10584367
    Abstract: A cell-spreading device may include a microchamber chip having a microchamber capable of enclosing and retaining a cell, a channel-forming frame united with the microchamber chip to form a channel on the microchamber, an inlet provided in the channel-forming frame to allow a cell suspension to flow into the channel, and an outlet provided in the channel-forming frame to allow the cell suspension, which has been allowed to flow into the channel through the inlet, to flow out from the channel. When an aperture of the microchamber is projected perpendicularly to a longitudinal width of the microchamber chip, the void ratio that is a ratio of the sum total of voids to the longitudinal width is not more than 5%, the void being a length of a portion where the projected aperture of the microchamber is not present against the longitudinal width.
    Type: Grant
    Filed: July 1, 2013
    Date of Patent: March 10, 2020
    Assignee: KONICA MINOLTA, INC.
    Inventors: Jungo Araki, Kumiko Hoshi, Shohei Yamamura, Shouki Yatsushiro, Masatoshi Kataoka
  • Patent number: 9249445
    Abstract: Disclosed is a detection method for detecting a specific cell in a sample containing multiple cells including the specific cell. Specifically disclosed is a detection method for detecting a specific cell in a sample containing multiple cells including the specific cell, which comprises the following steps (1) and (2): (1) retaining cells contained in the sample on a microarray chip which comprises multiple microchambers, wherein each of the microchambers can contain multiple cells; and (2) confirming the presence or absence of the specific cell in the cells retained on the microarray chip.
    Type: Grant
    Filed: September 2, 2009
    Date of Patent: February 2, 2016
    Assignee: NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY
    Inventors: Shohei Yamamura, Shouki Yatsushiro, Masatoshi Kataoka
  • Publication number: 20150337355
    Abstract: A cell-spreading device may include a microchamber chip having a microchamber capable of enclosing and retaining a cell, a channel-forming frame united with the microchamber chip to form a channel on the microchamber, an inlet provided in the channel-forming frame to allow a cell suspension to flow into the channel, and an outlet provided in the channel-forming frame to allow the cell suspension, which has been allowed to flow into the channel through the inlet, to flow out from the channel. When an aperture of the microchamber is projected perpendicularly to a longitudinal width of the microchamber chip, the void ratio that is a ratio of the sum total of voids to the longitudinal width is not more than 5%, the void being a length of a portion where the projected aperture of the microchamber is not present against the longitudinal width.
    Type: Application
    Filed: July 1, 2013
    Publication date: November 26, 2015
    Inventors: Jungo ARAKI, Kumiko HOSHI, Shohei YAMAMURA, Shouki YATSUSHIRO, Masatoshi KATAOKA
  • Publication number: 20150203804
    Abstract: Provided is a micro chamber chip for cell expansion, with which the non-specific adsorption of cells onto a surface other than a micro chamber can be suppressed, and a rare cell from a substance that contains a large quantity of cells, such as a blood, can be stored, held and observed without a leakage of the rare cell. A micro chamber chip for cell expansion is provided with a micro chamber chip in which a micro chamber configured to store and hold one or more cells is formed on an upper surface of a substrate, wherein an upper surface of the micro chamber chip and an inner wall surface of the micro chamber are coated with a blocking agent that can suppress a non-specific adsorption of a cell on the upper surface.
    Type: Application
    Filed: July 1, 2013
    Publication date: July 23, 2015
    Inventors: Kumiko Hoshi, Jungo Araki, Shohei Yamamura, Shouki Yatsushiro, Masatoshi Kataoka
  • Patent number: 9017969
    Abstract: The present invention provides: genetically modified yeasts such as mutant yeasts having an ability to produce N-linked sugar chains of Man5GlcNAc2 and a decreased ability to produce O-linked sugar chains, mutant yeasts having an ability to produce N-linked sugar chains of Man5GlcNAc2 and further having an ability to produce N-linked sugar chains of GlcNAc1Man5GlcNAc2, and mutant yeasts having an increased ability to produce and secrete proteins and an ability to produce N-linked sugar chains of Man5GlcNAc2; and a method for producing glycoproteins using them.
    Type: Grant
    Filed: March 1, 2012
    Date of Patent: April 28, 2015
    Assignee: National Institute of Advanced Industrial Science and Technology
    Inventors: Hiroko Abe, Kazuya Tomimoto, Yasuko Fujita, Tomoko Iwaki, Yasunori Chiba, Yoshihiro Nakajima, Kenichi Nakayama, Masatoshi Kataoka, Shouki Yatsushiro, Shohei Yamamura
  • Patent number: 8664003
    Abstract: A chip useful for treating cells and the like which has a mechanism and a structure wherein the size of a hole pattern is arbitrarily changed so that cells can easily move in and get out from the hole in scattering or collecting cells but can hardly get out from the hole during washing or antigen-stimulation. The chip comprises a crosslinked product of a temperature-responsive polymer as a constituting member and being provided with a film having a hole pattern on the surface of a baseboard. A method of producing the chip comprises applying a composition containing a crosslinkable temperature-responsive polymer on the surface of a baseboard to thereby form a coating film, crosslinking the coating film to thereby form the crosslinked product as described above and then forming a hole pattern on the coating film of the crosslinked product.
    Type: Grant
    Filed: August 8, 2012
    Date of Patent: March 4, 2014
    Assignees: Toyama Prefecture, Nissan Chemical Industries, Ltd.
    Inventors: Eiichi Tamiya, Yoshiyuki Yokoyama, Satoshi Fujiki, Katsumi Tanino, Atsushi Muraguchi, Hiroyuki Kishi, Yoshiharu Tokimitsu, Shohei Yamamura
  • Publication number: 20130171692
    Abstract: The present invention provides: genetically modified yeasts such as mutant yeasts having an ability to produce N-linked sugar chains of Man5GlcNAc2 and a decreased ability to produce O-linked sugar chains, mutant yeasts having an ability to produce N-linked sugar chains of Man5GlcNAc2 and further having an ability to produce N-linked sugar chains of GlcNAc1Man5GlcNAc2, and mutant yeasts having an increased ability to produce and secrete proteins and an ability to produce N-linked sugar chains of Man5GlcNAc2; and a method for producing glycoproteins using them.
    Type: Application
    Filed: March 1, 2012
    Publication date: July 4, 2013
    Applicant: National Institute of Advanced Industrial Science and Technology
    Inventors: Hiroke Abe, Kazuya Tomimoto, Yasuko Fujita, Tomoko Iwaki, Yasunori Chiba, Yoshihiro Nakajima, Kenichi Nakayama, Masatoshi Kataoka, Shouki Yatsushiro, Shohei Yamamura
  • Publication number: 20120301942
    Abstract: A chip useful for treating cells and the like which has a mechanism and a structure wherein the size of a hole pattern is arbitrarily changed so that cells can easily move in and get out from the hole in scattering or collecting cells but can hardly get out from the hole during washing or antigen-stimulation. The chip comprises a crosslinked product of a temperature-responsive polymer as a constituting member and being provided with a film having a hole pattern on the surface of a baseboard. A method of producing the chip comprises applying a composition containing a crosslinkable temperature-responsive polymer on the surface of a baseboard to thereby form a coating film, crosslinking the coating film to thereby form the crosslinked product as described above and then forming a hole pattern on the coating film of the crosslinked product.
    Type: Application
    Filed: August 8, 2012
    Publication date: November 29, 2012
    Applicants: TOYAMA PREFECTURE, NISSAN CHEMICAL INDUSTRIES, LTD.
    Inventors: Eiichi TAMIYA, Yoshiyuki YOKOYAMA, Satoshi FUJIKI, Katsumi TANINO, Atsushi MURAGUCHI, Hiroyuki KISHI, Yoshiharu TOKIMITSU, Shohei YAMAMURA
  • Publication number: 20110189723
    Abstract: Disclosed is a detection method for detecting a specific cell in a sample containing multiple cells including the specific cell. Specifically disclosed is a detection method for detecting a specific cell in a sample containing multiple cells including the specific cell, which comprises the following steps (1) and (2): (1) retaining cells contained in the sample on a microarray chip which comprises multiple microchambers, wherein each of the microchambers can contain multiple cells; and (2) confirming the presence or absence of the specific cell in the cells retained on the microarray chip.
    Type: Application
    Filed: September 2, 2009
    Publication date: August 4, 2011
    Applicant: NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY
    Inventors: Shohei Yamamura, Shouki Yatsushiro, Masatoshi Kataoka
  • Publication number: 20090130384
    Abstract: [Problems] To provide a novel chip useful for treating cells and the like which has a mechanism and a structure wherein the size of a hole pattern is arbitrarily changed so that cells can easily move in and get out from the hole in scattering or collecting cells but can hardly get out from the hole during washing or antigen-stimulation. [Means for Solving Problems] A chip comprising a crosslinked product of a temperature-responsive polymer as a constituting member and being provided with a film having a hole pattern on the surface of a baseboard. A method of producing a chip which comprises a crosslinked product of a temperature-responsive polymer as a constituting member and is provided with a film having a hole pattern on the surface of the baseboard.
    Type: Application
    Filed: September 27, 2006
    Publication date: May 21, 2009
    Applicants: TOYAMA PREFECTURE, NISSAN CHEMICAL INDUSTRIES, LTD.
    Inventors: Eiichi Tamiya, Yoshiyuki Yokoyama, Satoshi Fujiki, Katsumi Tanino, Atsushi Muraguchi, Horoyuki Kishi, Yoshiharu Tokimitsu, Shohei Yamamura