Patents by Inventor Shoji Futaki

Shoji Futaki has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8288053
    Abstract: This invention provides a nickel oxide powder material, a production process thereof with high efficiency, a raw material composition for use in the same, and an anode material using the nickel oxide powder material. The nickel oxide powder material, when used as an anode material for a solid oxide fuel cell, can reduce heat shrinkage percentage in calcination to reduce a shrinkage difference from other component, and can suppress the occurrence of cracking, delamination, warpage and the like during calcining. Also in power generation after re-reduction after exposure of the anode once to an oxidizing atmosphere, for example, due to the disruption of the fuel supply, deterioration of microstructure of the anode can be suppressed, and the voltage drop percentage of the cell can be reduced.
    Type: Grant
    Filed: August 10, 2006
    Date of Patent: October 16, 2012
    Assignee: Sumitomo Metal Mining Co., Ltd.
    Inventors: Norimichi Yonesato, Hiroyuki Toya, Kazuomi Ryoshi, Tai Ito, Shoji Futaki
  • Patent number: 7608357
    Abstract: A powder material for a fuel electrode of a solid oxide fuel cell is provided, along with a fuel electrode for a solid oxide fuel cell prepared by sintering the fuel electrode powder material, and a solid oxide fuel cell including the fuel electrode. The fuel electrode powder material includes a nickel based powder material containing at least one of nickel and nickel oxide and at least one of titanium oxide (IV) and a titanium source capable of changing into titanium oxide (IV) by heat treatment in air.
    Type: Grant
    Filed: November 18, 2005
    Date of Patent: October 27, 2009
    Assignees: Toho Gas Co., Ltd., Sumitomo Metal Mining Co., Ltd.
    Inventors: Kenji Ukai, Yasunobu Mizutani, Kouji Hisada, Misuzu Yokoyama, Shoji Futaki, Hiroyuki Toya
  • Publication number: 20090136812
    Abstract: This invention provides a nickel oxide powder material, a production process thereof with high efficiency, a raw material composition for use in the same, and an anode material using the nickel oxide powder material. The nickel oxide powder material, when used as an anode material for a solid oxide fuel cell, can reduce heat shrinkage percentage in calcination to reduce a shrinkage difference from other component, and can suppress the occurrence of cracking, delamination, warpage and the like during calcining. Also in power generation after re-reduction after exposure of the anode once to an oxidizing atmosphere, for example, due to the disruption of the fuel supply, deterioration of microstructure of the anode can be suppressed, and the voltage drop percentage of the cell can be reduced.
    Type: Application
    Filed: August 10, 2006
    Publication date: May 28, 2009
    Applicant: Sumitomo Metal Mining Co., LTD.
    Inventors: Norimichi Yonesato, Hiroyuki Toya, Kazuomi Ryoshi, Tai Ito, Shoji Futaki
  • Patent number: 7186289
    Abstract: There is provided a nickel powder suitable as conductive particles for use in conductive paste and conductive resin, that is inexpensive, has superior weather resistance, low resistivity when kneaded with resin, and is stable when used in the long-term, and a production method therefor. A nickel powder is produced by a two stage reduction and precipitation process from an aqueous solution containing a bivalent nickel salt, wherein an average primary particle diameter is 0.2 ?m to 2.0 ?m as measured with a scanning electron microscope (SEM), wherein an average secondary particle diameter is 8 ?m to 50 ?m according to laser particle size distribution measurement, wherein a tap density is 0.5 g/ml to 2.0 g/ml, wherein a cobalt content is 1 to 20 weight %. The cobalt may be contained in only the surface layer of the nickel powder at a content of 1 weight % to 40 weight %.
    Type: Grant
    Filed: October 19, 2004
    Date of Patent: March 6, 2007
    Assignee: Sunitomo Metal Mining Co., Ltd.
    Inventors: Toshihiro Kato, Shuji Okada, Shoji Futaki
  • Publication number: 20060110633
    Abstract: A material for a fuel electrode of a solid oxide fuel cell with which volume change of the fuel electrode can be reduced as compared to the conventional one even if the fuel electrode is exposed to an oxidation-reduction cycle, a fuel electrode for a solid oxide fuel cell prepared by sintering the fuel electrode material, and a solid oxide fuel cell capable of stably maintaining power generation even if a fuel electrode thereof is exposed to an oxidation-reduction cycle. The fuel electrode material includes a material powder containing at least one of nickel and nickel oxide, wherein the material powder further contains at least one of titanium oxide (IV) and a titanium source capable of changing into titanium oxide (IV) by heat treatment in air. The fuel electrode material is sintered to prepare the fuel electrode, which is provided for the solid oxide fuel cell.
    Type: Application
    Filed: November 18, 2005
    Publication date: May 25, 2006
    Applicants: Toho Gas Co., Ltd., Sumitomo Metal Mining Co., Ltd.
    Inventors: Kenji Ukai, Yasunobu Mizutani, Kouji Hisada, Misuzu Yokoyama, Shoji Futaki, Hiroyuki Toya
  • Publication number: 20050072270
    Abstract: There is provided a nickel powder suitable as conductive particles for use in conductive paste and conductive resin, that is inexpensive, has superior weather resistance, low resistivity when kneaded with resin, and is stable when used in the long-term, and a production method therefor. A nickel powder is produced by a two stage reduction and precipitation process from an aqueous solution containing a bivalent nickel salt, wherein an average primary particle diameter is 0.2 ?m to 2.0 ?m as measured with a scanning electron microscope (SEM), wherein an average secondary particle diameter is 8 ?m to 50 ?m according to laser particle size distribution measurement, wherein a tap density is 0.5 g/ml to 2.0 g/ml, wherein a cobalt content is 1 to 20 weight %. The cobalt may be contained in only the surface layer of the nickel powder at a content of 1 weight % to 40 weight %.
    Type: Application
    Filed: October 19, 2004
    Publication date: April 7, 2005
    Inventors: Toshihiro Kato, Shuji Okada, Shoji Futaki