Patents by Inventor Shota SAMBONSUGE

Shota SAMBONSUGE has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240339419
    Abstract: A silicon carbide semiconductor device includes a silicon carbide substrate having a first main surface; a first electrode formed on the first main surface; and a plating film formed on the first electrode, wherein a first irregularity is formed on a surface of the plating film, and H1/H2 is 0.10 or less, where H1 is a difference between a maximum value of a distance to a top of the first irregularity from the first main surface and a minimum value of a distance to a bottom of the first irregularity from the first main surface, and H2 is a minimum value of a thickness of the plating film.
    Type: Application
    Filed: September 5, 2022
    Publication date: October 10, 2024
    Inventor: Shota SAMBONSUGE
  • Publication number: 20230402280
    Abstract: A method for depositing a metal oxynitride film by epitaxial growth at a low temperature is provided. It is a method for manufacturing a metal oxynitride film, in which the metal oxynitride film is epitaxially grown on a single crystal substrate by a sputtering method using an oxide target with a gas containing a nitrogen gas introduced. The oxide target contains zinc, the substrate during the deposition of the metal oxynitride film is higher than or equal to 80° C. and lower than or equal to 400° C., and the flow rate of the nitrogen gas is greater than or equal to 50% and lower than or equal to 100% of the total flow rate of the gas.
    Type: Application
    Filed: August 11, 2023
    Publication date: December 14, 2023
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Kazuki TANEMURA, Shota SAMBONSUGE, Naoki OKUNO
  • Patent number: 11728163
    Abstract: A method for depositing a metal oxynitride film by epitaxial growth at a low temperature is provided. It is a method for manufacturing a metal oxynitride film, in which the metal oxynitride film is epitaxially grown on a single crystal substrate by a sputtering method using an oxide target with a gas containing a nitrogen gas introduced. The oxide target contains zinc, the substrate during the deposition of the metal oxynitride film is higher than or equal to 80° C. and lower than or equal to 400° C., and the flow rate of the nitrogen gas is greater than or equal to 50% and lower than or equal to 100% of the total flow rate of the gas.
    Type: Grant
    Filed: June 24, 2019
    Date of Patent: August 15, 2023
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Kazuki Tanemura, Shota Sambonsuge, Naoki Okuno
  • Patent number: 11616149
    Abstract: A semiconductor device with improved reliability is provided. The semiconductor device includes a first oxide, a second oxide over the first oxide, a third oxide over the second oxide, and an insulator over the third oxide. The second oxide contains In, an element M (M is Al, Ga, Y, or Sn), and Zn. The first oxide and the third oxide each include a region whose In concentration is lower than that in the second oxide.
    Type: Grant
    Filed: November 28, 2018
    Date of Patent: March 28, 2023
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Takuya Handa, Yasuharu Hosaka, Shota Sambonsuge, Yasumasa Yamane, Kenichi Okazaki
  • Patent number: 11610997
    Abstract: A semiconductor material is an oxide including a metal element and nitrogen, in which the metal element is indium (In), an element M (M is aluminum (Al), gallium (Ga), yttrium (Y), or tin (Sn)), and zinc (Zn) and nitrogen is taken into an oxygen vacancy or bonded to an atom of the metal element.
    Type: Grant
    Filed: November 15, 2018
    Date of Patent: March 21, 2023
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Shota Sambonsuge, Yasumasa Yamane, Yuta Endo, Naoki Okuno
  • Patent number: 11211467
    Abstract: A highly reliable semiconductor device is provided. The semiconductor device includes a first insulator; a first oxide provided over the first insulator; a second oxide provided over the first oxide; a first conductor and a second conductor provided apart from each other over the second oxide; a third oxide provided over the second oxide, the first conductor, and the second conductor; a second insulating film provided over the third oxide; and a third conductor provided over the second oxide with the third oxide and the second insulating film positioned therebetween. The third oxide contains a metal element and nitrogen, and the metal element is bonded to nitrogen.
    Type: Grant
    Filed: October 29, 2018
    Date of Patent: December 28, 2021
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Tomoki Hiramatsu, Yusuke Nonaka, Noritaka Ishihara, Shota Sambonsuge, Yasumasa Yamane, Yuta Endo
  • Publication number: 20210175361
    Abstract: A semiconductor device with improved reliability is provided. The semiconductor device includes a first oxide, a second oxide over the first oxide, a third oxide over the second oxide, and an insulator over the third oxide. The second oxide contains In, an element M (M is Al, Ga, Y, or Sn), and Zn. The first oxide and the third oxide each include a region whose In concentration is lower than that in the second oxide.
    Type: Application
    Filed: November 28, 2018
    Publication date: June 10, 2021
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Shunpei YAMAZAKI, Takuya HANDA, Yasuharu HOSAKA, Shota SAMBONSUGE, Yasumasa YAMANE, Kenichi OKAZAKI
  • Publication number: 20210125823
    Abstract: A method for depositing a metal oxynitride film by epitaxial growth at a low temperature is provided. It is a method for manufacturing a metal oxynitride film, in which the metal oxynitride film is epitaxially grown on a single crystal substrate by a sputtering method using an oxide target with a gas containing a nitrogen gas introduced. The oxide target contains zinc, the substrate during the deposition of the metal oxynitride film is higher than or equal to 80° C. and lower than or equal to 400° C., and the flow rate of the nitrogen gas is greater than or equal to 50% and lower than or equal to 100% of the total flow rate of the gas.
    Type: Application
    Filed: June 24, 2019
    Publication date: April 29, 2021
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Kazuki TANEMURA, Shota SAMBONSUGE, Naoki OKUNO
  • Publication number: 20210119052
    Abstract: A semiconductor material is an oxide including a metal element and nitrogen, in which the metal element is indium (In), an element M (M is aluminum (Al), gallium (Ga), yttrium (Y), or tin (Sn)), and zinc (Zn) and nitrogen is taken into an oxygen vacancy or bonded to an atom of the metal element.
    Type: Application
    Filed: November 15, 2018
    Publication date: April 22, 2021
    Inventors: Shunpei YAMAZAKI, Shota SAMBONSUGE, Yasumasa YAMANE, Yuta ENDO, Naoki OKUNO
  • Patent number: 10964787
    Abstract: A semiconductor device includes a first conductor; a first insulator thereover; a first oxide thereover; a second oxide thereover; a second conductor and a third conductor that are separate from each other thereover; a third oxide over the first insulator, the second oxide, the second conductor, and the third conductor; a second insulator thereover; a fourth conductor thereover; and a third insulator over the first insulator, the second insulator, and the fourth conductor. The second oxide includes a region where the energy of the conduction band minimum of an energy band is low and a region where the energy of the conduction band minimum of the energy band is high. The energy of the conduction band minimum of the third oxide is higher than that of the region of the second oxide where the energy of the conduction band minimum is low. Side surfaces of the first oxide and the second oxide are covered with the third oxide.
    Type: Grant
    Filed: January 2, 2020
    Date of Patent: March 30, 2021
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Tsutomu Murakawa, Toshihiko Takeuchi, Hiroki Komagata, Hiromi Sawai, Yasumasa Yamane, Shota Sambonsuge, Kazuya Sugimoto, Shunpei Yamazaki
  • Publication number: 20200266281
    Abstract: A highly reliable semiconductor device is provided. The semiconductor device includes a first insulator; a first oxide provided over the first insulator; a second oxide provided over the first oxide; a first conductor and a second conductor provided apart from each other over the second oxide; a third oxide provided over the second oxide, the first conductor, and the second conductor; a second insulating film provided over the third oxide; and a third conductor provided over the second oxide with the third oxide and the second insulating film positioned therebetween. The third oxide contains a metal element and nitrogen, and the metal element is bonded to nitrogen.
    Type: Application
    Filed: October 29, 2018
    Publication date: August 20, 2020
    Inventors: Shunpei YAMAZAKI, Tomoki HIRAMATSU, Yusuke NONAKA, Noritaka ISHIHARA, Shota SAMBONSUGE, Yasumasa YAMANE, Yuta ENDO
  • Publication number: 20200135867
    Abstract: A semiconductor device includes a first conductor; a first insulator thereover; a first oxide thereover; a second oxide thereover; a second conductor and a third conductor that are separate from each other thereover; a third oxide over the first insulator, the second oxide, the second conductor, and the third conductor; a second insulator thereover; a fourth conductor thereover; and a third insulator over the first insulator, the second insulator, and the fourth conductor. The second oxide includes a region where the energy of the conduction band minimum of an energy band is low and a region where the energy of the conduction band minimum of the energy band is high. The energy of the conduction band minimum of the third oxide is higher than that of the region of the second oxide where the energy of the conduction band minimum is low. Side surfaces of the first oxide and the second oxide are covered with the third oxide.
    Type: Application
    Filed: January 2, 2020
    Publication date: April 30, 2020
    Inventors: Tsutomu MURAKAWA, Toshihiko TAKEUCHI, Hiroki KOMAGATA, Hiromi SAWAI, Yasumasa YAMANE, Shota SAMBONSUGE, Kazuya SUGIMOTO, Shunpei YAMAZAKI
  • Patent number: 10600875
    Abstract: A semiconductor device includes a first conductor; a first insulator thereover; a first oxide thereover; a second oxide thereover; a second conductor and a third conductor that are separate from each other thereover; a third oxide over the first insulator, the second oxide, the second conductor, and the third conductor; a second insulator thereover; a fourth conductor thereover; and a third insulator over the first insulator, the second insulator, and the fourth conductor. The second oxide includes a region where the energy of the conduction band minimum of an energy band is low and a region where the energy of the conduction band minimum of the energy band is high. The energy of the conduction band minimum of the third oxide is higher than that of the region of the second oxide where the energy of the conduction band minimum is low. Side surfaces of the first oxide and the second oxide are covered with the third oxide.
    Type: Grant
    Filed: June 21, 2017
    Date of Patent: March 24, 2020
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Tsutomu Murakawa, Toshihiko Takeuchi, Hiroki Komagata, Hiromi Sawai, Yasumasa Yamane, Shota Sambonsuge, Kazuya Sugimoto, Shunpei Yamazaki
  • Publication number: 20180006124
    Abstract: A semiconductor device includes a first conductor; a first insulator thereover; a first oxide thereover; a second oxide thereover; a second conductor and a third conductor that are separate from each other thereover; a third oxide over the first insulator, the second oxide, the second conductor, and the third conductor; a second insulator thereover; a fourth conductor thereover; and a third insulator over the first insulator, the second insulator, and the fourth conductor. The second oxide includes a region where the energy of the conduction band minimum of an energy band is low and a region where the energy of the conduction band minimum of the energy band is high. The energy of the conduction band minimum of the third oxide is higher than that of the region of the second oxide where the energy of the conduction band minimum is low. Side surfaces of the first oxide and the second oxide are covered with the third oxide.
    Type: Application
    Filed: June 21, 2017
    Publication date: January 4, 2018
    Inventors: Tsutomu MURAKAWA, Toshihiko TAKEUCHI, Hiroki KOMAGATA, Hiromi SAWAI, Yasumasa YAMANE, Shota SAMBONSUGE, Kazuya SUGIMOTO, Shunpei YAMAZAKI