Patents by Inventor Shou-Yi Hsu

Shou-Yi Hsu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120295410
    Abstract: A method for fabricating a super-junction semiconductor power device with reduced Miller capacitance includes the following steps. An N-type substrate is provided and a P-type epitaxial layer is formed on the N-type substrate. At least a trench is formed in the P-type epitaxial layer followed by forming a buffer layer on interior surface in the trench. An N-type dopant layer is filled into the trench and then the N-type dopant layer is etched to form a recessed structure at an upper portion of the trench. A gate oxide layer is formed, and simultaneously, dopants in the N-type dopant layer diffuse into the P-type epitaxial layer, forming an N-type diffusion layer. Finally, a gate conductor is filled into the recessed structure and an N-type source doped region is formed around the gate conductor in the P-type epitaxial layer.
    Type: Application
    Filed: September 15, 2011
    Publication date: November 22, 2012
    Inventors: Yung-Fa Lin, Shou-Yi Hsu, Meng-Wei Wu, Main-Gwo Chen, Yi-Chun Shih
  • Publication number: 20120289037
    Abstract: A method for fabricating a semiconductor power device includes the following steps. First, a substrate having at least a semiconductor layer and a pad layer thereon is provided. At least a trench is etched into the pad layer and the semiconductor layer. Then, a dopant source layer is deposited in the trench and on the pad layer followed by thermally driving in dopants of the dopant source layer into the semiconductor layer. A polishing process is performed to remove the dopant source layer from a surface of the pad layer and a thermal oxidation process is performed to eliminate micro-scratches formed during the polishing process. Finally, the pad layer is removed to expose the semiconductor layer.
    Type: Application
    Filed: August 17, 2011
    Publication date: November 15, 2012
    Inventors: Yung-Fa Lin, Shou-Yi Hsu, Yi-Lin Sun
  • Publication number: 20120276726
    Abstract: A method for fabricating a semiconductor power device includes the following steps. First, a substrate having thereon at least a semiconductor layer and a pad layer is provided. Then, at least a trench is etched into the pad layer and the semiconductor layer followed by depositing a dopant source layer in the trench and on the pad layer. A process is carried out thermally driving in dopants of the dopant source layer into the semiconductor layer. A rapid thermal process is performed to mend defects in the dopant source layer and defects between the dopant source layer and the semiconductor layer. Finally, a polishing process is performed to remove the dopant source layer from a surface of the pad layer.
    Type: Application
    Filed: August 17, 2011
    Publication date: November 1, 2012
    Inventors: Yung-Fa Lin, Shou-Yi Hsu, Yi-Lin Sun
  • Publication number: 20120267708
    Abstract: A termination structure for a power MOSFET device includes a substrate, an epitaxial layer on the substrate, a trench in the epitaxial layer, a first insulating layer within the trench, a first conductive layer atop the first insulating layer, and a column doping region in the epitaxial layer and in direct contact with the first conductive layer. The first conductive layer is in direct contact with the first insulating layer and is substantially level with a top surface of the epitaxial layer. The first conductive layer comprises polysilicon, titanium, titanium nitride or aluminum.
    Type: Application
    Filed: September 16, 2011
    Publication date: October 25, 2012
    Inventors: Yung-Fa Lin, Shou-Yi Hsu, Meng-Wei Wu, Main-Gwo Chen, Jing-Qing Chan, Yi-Chun Shih
  • Publication number: 20120248540
    Abstract: A semiconductor device includes: a substrate including a first epitaxial layer that has a first electrical type, and a second epitaxial layer; a transistor that includes a source region and an insulating spacer; an inner surrounding structure including an annular trench and an insulating spacer; an outer surrounding structure that has a second electrical type opposite to the first electrical type, and that is disposed adjacent to an upper surface of the second epitaxial layer to surround and contact the inner surrounding structure; and a conductive structure connecting to the source region, and the inner and outer surrounding structures.
    Type: Application
    Filed: January 12, 2012
    Publication date: October 4, 2012
    Applicant: ANPEC ELECTRONICS CORPORATION
    Inventors: Yung-Fa LIN, Shou-Yi HSU, Meng-Wei WU, Yi-Chun SHIH, Main-Gwo CHEN
  • Publication number: 20120252176
    Abstract: A method for fabricating a power transistor includes: (a) forming a trench in a substrate with a first electrical type; (b) diffusing second electrical type carriers into the substrate from the trench such that the substrate is formed into a first part and a second part that is diffused with the second electrical type carriers and that adjoins the trench, the first and second parts being crystal lattice continuous to each other; (c) forming a filling portion in the trench, the filling portion adjoining the second part; (d) performing a carrier-implanting process in the second part and the filling portion; and (e) forming over the substrate a gate structure that has a dielectric layer and a conductive layer.
    Type: Application
    Filed: January 12, 2012
    Publication date: October 4, 2012
    Applicant: ANPEC ELECTRONICS CORPORATION
    Inventors: Yung-Fa Lin, Shou-Yi Hsu, Meng-Wei Wu, Main-Gwo Chen, Yi-Chun Shih
  • Publication number: 20120199903
    Abstract: A semiconductor device having a super junction includes: a substrate having a first electrical type; a main body including a base part that has the first electrical type, and a modified part that has a second electrical type opposite to the first electrical type; a source zone contacting the modified part oppositely of the substrate, and having the first electrical type; and a gate structure having a dielectric layer that contacts the source zone, and a conductive layer formed on the dielectric layer oppositely of the main body.
    Type: Application
    Filed: January 12, 2012
    Publication date: August 9, 2012
    Applicant: ANPEC ELECTRONICS CORPORATION
    Inventors: Yung-Fa LIN, Shou-Yi HSU, Meng-Wei WU, Main-Gwo CHEN, Yi-Chun SHIH
  • Publication number: 20120181576
    Abstract: An insulated gate bipolar transistor includes: a collector layer; a drift layer formed on and connected to the collector layer; a gate structure including a dielectric layer formed on the drift layer, and a conductive layer formed on the dielectric layer; a first emitter structure including a well region formed within the drift layer and partially connected to the dielectric layer of the gate structure, a source region formed within the well region just underneath a top surface of the well region, and a first electrode formed on the top surface of the well region and connected to the well region and the source region; and a second emitter structure spaced apart from the gate structure and the first emitter structure, and including a bypass region formed on the top surface of the drift layer, and a second electrode formed on the bypass region.
    Type: Application
    Filed: September 21, 2011
    Publication date: July 19, 2012
    Applicant: ANPEC ELECTRONICS CORPORATION
    Inventors: Yung-Fa LIN, Shou-Yi Hsu, Meng-Wei Wu, Main-Gwo Chen, Yi-Chun Shih
  • Patent number: 8178410
    Abstract: A method for forming a power device includes the following steps. An epitaxial layer is formed on a substrate. A pad layer and hard mask are formed on the epitaxial layer. A trench is etched into the hard mask, the pad layer, and the epitaxial layer. The hard mask is removed. A buffer layer is formed on the sidewall of the trench. The trench is then filled with a dopant source layer comprising plural dopants. A drive-in process is performed to diffuse the dopants into the epitaxial layer through the buffer layer, thereby forming a diffusion region around the trench.
    Type: Grant
    Filed: June 28, 2011
    Date of Patent: May 15, 2012
    Assignee: Anpec Electronics Corporation
    Inventors: Yung-Fa Lin, Shou-Yi Hsu, Meng-Wei Wu, Main-Gwo Chen, Jing-Qing Chan, Yi-Chun Shih
  • Patent number: 6881986
    Abstract: A novel structure for a photodiode is disclosed. It is comprised of a p-type region, which can be a p-substrate or p-well, extending to the surface of a semiconductor substrate. A multiplicity of parallel finger-like n-wells is formed in the p-type region. The fingers are connected to a conductive region at one end.
    Type: Grant
    Filed: November 7, 2001
    Date of Patent: April 19, 2005
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Yu-Zung Chiou, Kuen-Hsien Lin, Chen Ying Lieh, Shou-Yi Hsu
  • Patent number: 6153517
    Abstract: A method is disclosed for forming a low resistance poly landing pad which is achieved by shunting the polysilicon of a landing pad with metallic conductors. A window is opened through a first dielectric layer to expose a conducting region over a semiconductor substrate. A metallic layer, deposited overall, is followed by an overall deposition of a polysilicon layer, with the layers being sufficient to fill the window completely. Metal and polysilicon outside the window is removed by chemical/mechanical polishing which also provides global planarization. Salicidation provides a silicide cover over the exposed surface of polysilicon, which was formed by the polishing. A second dielectric is deposited and an opening is formed to the landing pad.
    Type: Grant
    Filed: March 12, 1999
    Date of Patent: November 28, 2000
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Kun-Jung Chuang, Shou-Yi Hsu, Yi-Te Chen, Hon-Hung Lui
  • Patent number: 6071812
    Abstract: A method of fabricating a metal contact in a reduced aspect ratio contact hole. The method begins by forming a first insulating layer and a first barrier layer having a first barrier opening over a substrate. The first insulating layer is anisotropically etched through the first barrier opening forming an upper contact hole. A second barrier layer is formed on the first barrier layer and the first insulating layer. The second barrier layer is anisotropically etched forming spacers on sidewalls of the first insulating layer. The first insulating layer is anisotropically etched using the first barrier layer and the spacers as an etch mask forming a lower contact hole. The first barrier layer and the spacers are removed to form the reduced aspect ratio contact hole. The reduced aspect ratio contact hole is comprised by the upper and lower contact holes. The reduced aspect ratio contact hole is filled with a contact metal to contact the contact region in the substrate.
    Type: Grant
    Filed: October 19, 1998
    Date of Patent: June 6, 2000
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Shou-Yi Hsu, Hon-Hung Lui, Kun-Jung Chuang