Patents by Inventor Shouya WU

Shouya WU has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11931708
    Abstract: Provided is a carbon dioxide fluidity control device comprising, a sample preparation tank, a high-pressure stirring unit, a reciprocating plunger pump and a booster pump, wherein the stirring unit comprises one or more high-pressure stirring tanks, each provided with an atomizing spray probe and a piston, wherein a discharge port of the sample preparation tank is connected to the atomizing spray probe via a plunger pump, which is connected to the piston to push the piston to reciprocate; the booster pump is connected to the high-pressure stirring tanks to provide supercritical carbon dioxide to the high-pressure stirring tank; and a discharge port of the high-pressure stirring tanks is connected to an oilfield well group. Provided is a carbon dioxide fluidity control method using the device, comprising mixing surfactants and nanoparticles with heated carbon dioxide, and injecting a microemulsion of supercritical carbon dioxide and nano-silicon dioxide into an oilfield well group.
    Type: Grant
    Filed: April 17, 2020
    Date of Patent: March 19, 2024
    Assignee: China University of Petroleum (East China)
    Inventors: Chao Zhang, Zhaomin Li, Songyan Li, Yong Wang, Guangzhong Lv, Shouya Wu, Linghui Xi, Meijia Wang
  • Patent number: 11208872
    Abstract: A CCUS system for exploiting a thickened oil reservoir based on an optimal flue gas CO2 enrichment ratio. The CCUS system comprises a flue gas CO2 enrichment unit, a flue gas injection unit, a thickened oil thermal production well group unit and a produced gas recovery unit; the fuel gas CO2 enrichment unit comprises an air separating enrichment unit and a boiler injection gas premixed tank; the air separating enrichment unit comprises an air separating primary device used for separating air into oxygen and nitrogen preliminarily, and an air separating secondary device used for further enriching a part of the oxygen which is subjected to the preliminary separation; and the boiler injection gas premixed tank is used for mixing the preliminarily separated nitrogen, the preliminarily separated part of the oxygen and/or the further enriched oxygen.
    Type: Grant
    Filed: August 3, 2018
    Date of Patent: December 28, 2021
    Assignee: CHINA UNIVERSITY OF PETROLEUM
    Inventors: Chao Zhang, Zhaomin Li, Jianlin Liu, Dongya Zhao, Teng Lu, Shouya Wu, Longjiang Guo
  • Publication number: 20210324716
    Abstract: A CCUS system for exploiting a thickened oil reservoir based on an optimal flue gas CO2 enrichment ratio. The CCUS system comprises a flue gas CO2 enrichment unit, a flue gas injection unit, a thickened oil thermal production well group unit and a produced gas recovery unit; the fuel gas CO2 enrichment unit comprises an air separating enrichment unit and a boiler injection gas premixed tank; the air separating enrichment unit comprises an air separating primary device used for separating air into oxygen and nitrogen preliminarily, and an air separating secondary device used for further enriching a part of the oxygen which is subjected to the preliminary separation; and the boiler injection gas premixed tank is used for mixing the preliminarily separated nitrogen, the preliminarily separated part of the oxygen and/or the further enriched oxygen.
    Type: Application
    Filed: August 3, 2018
    Publication date: October 21, 2021
    Inventors: Chao ZHANG, Zhaomin LI, Jianlin LIU, Dongya ZHAO, Teng LU, Shouya WU, Longjiang GUO
  • Publication number: 20210220784
    Abstract: Provided is a carbon dioxide fluidity control device comprising, a sample preparation tank, a high-pressure stirring unit, a reciprocating plunger pump and a booster pump, wherein the stirring unit comprises one or more high-pressure stirring tanks, each provided with an atomizing spray probe and a piston, wherein a discharge port of the sample preparation tank is connected to the atomizing spray probe via a plunger pump, which is connected to the piston to push the piston to reciprocate; the booster pump is connected to the high-pressure stirring tanks to provide supercritical carbon dioxide to the high-pressure stirring tank; and a discharge port of the high-pressure stirring tanks is connected to an oilfield well group. Provided is a carbon dioxide fluidity control method using the device, comprising mixing surfactants and nanoparticles with heated carbon dioxide, and injecting a microemulsion of supercritical carbon dioxide and nano-silicon dioxide into an oilfield well group.
    Type: Application
    Filed: April 17, 2020
    Publication date: July 22, 2021
    Applicant: China University of Petroleum (East China)
    Inventors: Chao ZHANG, Zhaomin LI, Songyan LI, Yong WANG, Guangzhong LV, Shouya WU, Linghui XI, Meijia WANG
  • Publication number: 20190242225
    Abstract: A method for extracting tight oil includes the steps of performing several cycles of carbon dioxide huffing-puffing; selecting three adjacent cracks; installing a double-layered concentric oil tubing or two parallel oil tubes in a casing in the horizontal wellbore, and dividing space in the casing into an injection channel, an extraction channel a, and an extraction channel b; communicating the injection channel with the target injection crack; communicating the extraction channel a with the extraction crack a; and communicating the extraction channel b with the extraction crack b; injecting carbon dioxide from the wellbore into the injection channel, directing the crude oil into the extraction crack a and the extraction crack b from both sides of the target injection crack by carbon dioxide flooding and displacement, and extracting the crude oil along the extraction channel a and the extraction channel b.
    Type: Application
    Filed: November 18, 2018
    Publication date: August 8, 2019
    Inventors: Zhaomin LI, Shouya WU, Chao ZHANG, Binfei LI, Yuliang SU, Guangzhong LV, Meijia WANG