Patents by Inventor Shoyu Watanabe

Shoyu Watanabe has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10062758
    Abstract: A semiconductor device having a low feedback capacitance and a low switching loss. The semiconductor device includes: a substrate; a drift layer formed on a surface of the semiconductor substrate; a plurality of first well regions formed on a surface of the drift layer; a source region which is an area formed on a surface of each of the first well regions and defining, as a channel region, the surface of each of the first well regions interposed between the area and the drift layer; a gate electrode formed over the channel region and the drift layer thereacross through a gate insulating film; and second well regions buried inside the drift layer below the gate electrode and formed to be individually connected to each of the first well regions adjacent to one another.
    Type: Grant
    Filed: August 19, 2014
    Date of Patent: August 28, 2018
    Assignee: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Naruhisa Miura, Shuhei Nakata, Kenichi Ohtsuka, Shoyu Watanabe, Hiroshi Watanabe
  • Patent number: 9874596
    Abstract: The present invention provides a method for manufacturing silicon carbide semiconductor apparatus including a testing step of testing a PN diode for the presence or absence of stacking faults in a relatively short time and an energization test apparatus. The present invention sets the temperature of a bipolar semiconductor element at 150° C. or higher and 230° C. or lower, causes a forward current having a current density of 120 [A/cm2] or more and 400 [A/cm2] or less to continuously flow through the bipolar semiconductor element, calculates, in a case where a forward resistance of the bipolar semiconductor element through which the forward current flows reaches a saturation state, the degree of change in the forward resistance, and determines whether the calculated degree of change is smaller than a threshold value.
    Type: Grant
    Filed: March 10, 2014
    Date of Patent: January 23, 2018
    Assignee: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Shoyu Watanabe, Akihiro Koyama, Shigehisa Yamamoto, Yukiyasu Nakao, Kazuya Konishi
  • Patent number: 9502553
    Abstract: In a cell region of a first major surface of a semiconductor substrate of a first conductivity type, a first well of a second conductivity type is in an upper surface. A diffusion region of a first conductivity type is in the upper surface in the first well. A first gate insulating film is on the first well, and a first gate electrode on the first gate insulating film. A second well of a second conductivity type is in the upper surface of the first major surface on a peripheral portion of the cell region. A second gate insulating film is on the second well, and a thick field oxide film is on the peripheral side of the second gate insulating film. A second gate electrode is sequentially on the second gate insulating film and the field oxide film and electrically connected to the first gate electrode. A first electrode is connected to the first well, the second well and the diffusion region. A second electrode is connected on a second major surface of the semiconductor substrate.
    Type: Grant
    Filed: July 1, 2015
    Date of Patent: November 22, 2016
    Assignee: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Naruhisa Miura, Shuhei Nakata, Kenichi Ohtsuka, Shoyu Watanabe, Naoki Yutani
  • Patent number: 9293572
    Abstract: In a high speed switching power semiconductor device having a sense pad, a high voltage is generated during switching operations in well regions under the sense pad due to a displacement current flowing through its flow path with a resistance, whereby the power semiconductor device sometimes breaks down by dielectric breakdown of a thin insulating film such as a gate insulating film. In a power semiconductor device according to the invention, sense-pad well contact holes are provided on well regions positioned under the sense pad and penetrate a field insulating film thicker than the gate insulating film to connect to the source pad, thereby improving reliability.
    Type: Grant
    Filed: June 24, 2010
    Date of Patent: March 22, 2016
    Assignee: Mitsubishi Electric Corporation
    Inventors: Akihiko Furukawa, Yasuhiro Kagawa, Naruhisa Miura, Shiro Hino, Shuhei Nakata, Kenichi Ohtsuka, Shoyu Watanabe, Masayuki Imaizumi
  • Publication number: 20160003889
    Abstract: The present invention provides a method for manufacturing silicon carbide semiconductor apparatus including a testing step of testing a PN diode for the presence or absence of stacking faults in a relatively short time and an energization test apparatus. The present invention sets the temperature of a bipolar semiconductor element at 150° C. or higher and 230° C. or lower, causes a forward current having a current density of 120 [A/cm2] or more and 400 [A/cm2] or less to continuously flow through the bipolar semiconductor element, calculates, in a case where a forward resistance of the bipolar semiconductor element through which the forward current flows reaches a saturation state, the degree of change in the forward resistance, and determines whether the calculated degree of change is smaller than a threshold value.
    Type: Application
    Filed: March 10, 2014
    Publication date: January 7, 2016
    Applicant: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Shoyu WATANABE, Akihiro KOYAMA, Shigehisa YAMAMOTO, Yukiyasu NAKAO, Kazuya KONISHI
  • Publication number: 20150303297
    Abstract: In a cell region of a first major surface of a semiconductor substrate of a first conductivity type, a first well of a second conductivity type is in an upper surface. A diffusion region of a first conductivity type is in the upper surface in the first well. A first gate insulating film is on the first well, and a first gate electrode on the first gate insulating film. A second well of a second conductivity type is in the upper surface of the first major surface on a peripheral portion of the cell region. A second gate insulating film is on the second well, and a thick field oxide film is on the peripheral side than the second gate insulating film. A second gate electrode is sequentially on the second gate insulating film and the field oxide film and electrically connected to the first gate electrode. A first electrode is connected to the first, second well and the diffusion region. A second electrode is connected on a second major surface of the semiconductor substrate.
    Type: Application
    Filed: July 1, 2015
    Publication date: October 22, 2015
    Applicant: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Naruhisa MIURA, Shuhei NAKATA, Kenichi OHTSUKA, Shoyu WATANABE, Naoki YUTANI
  • Patent number: 9105715
    Abstract: In a cell region of a first major surface of a semiconductor substrate of a first conductivity type, a first well of a second conductivity type is in an upper surface. A diffusion region of a first conductivity type is in the upper surface in the first well. A first gate insulating film is on the first well, and a first gate electrode on the first gate insulating film. A second well of a second conductivity type is in the upper surface of the first major surface on a peripheral portion of the cell region. A second gate insulating film is on the second well, and a thick field oxide film is on the peripheral side than the second gate insulating film. A second gate electrode is sequentially on the second gate insulating film and the field oxide film and electrically connected to the first gate electrode. A first electrode is connected to the first, second well and the diffusion region. A second electrode is connected on a second major surface of the semiconductor substrate.
    Type: Grant
    Filed: April 30, 2009
    Date of Patent: August 11, 2015
    Assignee: Mitsubishi Electric Corporation
    Inventors: Naruhisa Miura, Shuhei Nakata, Kenichi Ohtsuka, Shoyu Watanabe, Naoki Yutani
  • Patent number: 9006819
    Abstract: A semiconductor device includes a semiconductor substrate of a first conductivity type, a drift layer of the first conductivity type which is formed on a first main surface of the semiconductor substrate, a second well region of a second conductivity type which is formed to surround a cell region of the drift layer, and a source pad for electrically connecting the second well regions and a source region of the cell region through a first well contact hole provided to penetrate a gate insulating film on the second well region, a second well contact hole provided to penetrate a field insulating film on the second well region and a source contact hole.
    Type: Grant
    Filed: February 8, 2011
    Date of Patent: April 14, 2015
    Assignee: Mitsubishi Electric Corporation
    Inventors: Shiro Hino, Naruhisa Miura, Shuhei Nakata, Kenichi Ohtsuka, Shoyu Watanabe, Akihiko Furukawa, Yukiyasu Nakao, Masayuki Imaizumi
  • Publication number: 20140353686
    Abstract: A semiconductor device having a low feedback capacitance and a low switching loss. The semiconductor device includes: a substrate; a drift layer formed on a surface of the semiconductor substrate; a plurality of first well regions formed on a surface of the drift layer; a source region which is an area formed on a surface of each of the first well regions and defining, as a channel region, the surface of each of the first well regions interposed between the area and the drift layer; a gate electrode formed over the channel region and the drift layer thereacross through a gate insulating film; and second well regions buried inside the drift layer below the gate electrode and formed to be individually connected to each of the first well regions adjacent to one another.
    Type: Application
    Filed: August 19, 2014
    Publication date: December 4, 2014
    Applicant: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Naruhisa Miura, Shuhei Nakata, Kenichi Ohtsuka, Shoyu Watanabe, Hiroshi Watanabe
  • Patent number: 8860039
    Abstract: A semiconductor device having a low feedback capacitance and a low switching loss. The semiconductor device includes: a substrate; a drift layer formed on a surface of the semiconductor substrate; a plurality of first well regions formed on a surface of the drift layer; a source region which is an area formed on a surface of each of the first well regions and defining, as a channel region, the surface of each of the first well regions interposed between the area and the drift layer; a gate electrode formed over the channel region and the drift layer thereacross through a gate insulating film; and second well regions buried inside the drift layer below the gate electrode and formed to be individually connected to each of the first well regions adjacent to one another.
    Type: Grant
    Filed: April 7, 2011
    Date of Patent: October 14, 2014
    Assignee: Mitsubishi Electric Corporation
    Inventors: Naruhisa Miura, Shuhei Nakata, Kenichi Ohtsuka, Shoyu Watanabe, Hiroshi Watanabe
  • Patent number: 8629498
    Abstract: In a power semiconductor device that switches at a high speed, a displacement current flows at a time of switching, so that a high voltage occurs which may cause breakdown of a thin insulating film such as a gate insulating film.
    Type: Grant
    Filed: July 15, 2009
    Date of Patent: January 14, 2014
    Assignee: Mitsubishi Electric Corporation
    Inventors: Shoyu Watanabe, Shuhei Nakata, Naruhisa Miura
  • Patent number: 8513735
    Abstract: A structure of a power semiconductor device, in which a P-well region having a large area and a gate electrode are opposed to each other through a field oxide film having a larger thickness than that of a gate insulating film such that the P-well region having a large area and the gate electrode are not opposed to each other through the gate insulating film, or the gate electrode is not provided above the gate insulating film that includes the P-well region having a large area therebelow.
    Type: Grant
    Filed: June 30, 2009
    Date of Patent: August 20, 2013
    Assignee: Mitsubishi Electric Corporation
    Inventors: Shuhei Nakata, Shoyu Watanabe, Kenichi Otsuka, Naruhisa Miura
  • Patent number: 8492836
    Abstract: In a semiconductor device according to the present invention, a p-type well region disposed in an outer peripheral portion of the power semiconductor device is divided into two parts, that is, an inside and an outside, and a field oxide film having a greater film thickness than the gate insulating film is provided on a well region at the outside to an inside of an inner periphery of the well region. Therefore, it is possible to prevent, in the gate insulating film, a dielectric breakdown due to the voltage generated by the flow of the displacement current in switching.
    Type: Grant
    Filed: October 14, 2009
    Date of Patent: July 23, 2013
    Assignee: Mitsubishi Electric Corporation
    Inventors: Naruhisa Miura, Shuhei Nakata, Kenichi Ohtsuka, Shoyu Watanabe, Shiro Hino, Akihiko Furukawa
  • Publication number: 20130168700
    Abstract: In a high speed switching power semiconductor device having a sense pad, a high voltage is generated during switching operations in well regions under the sense pad due to a displacement current flowing through its flow path with a resistance, whereby the power semiconductor device sometimes breaks down by dielectric breakdown of a thin insulating film such as a gate insulating film. In a power semiconductor device according to the invention, sense-pad well contact holes are provided on well regions positioned under the sense pad and penetrate a field insulating film thicker than the gate insulating film to connect to the source pad, thereby improving reliability.
    Type: Application
    Filed: June 24, 2010
    Publication date: July 4, 2013
    Applicant: Mitsubishi Electric Corporation
    Inventors: Akihiko Furukawa, Yasuhiro Kagawa, Naruhisa Miura, Shiro Hino, Shuhei Nakata, Kenichi Ohtsuka, Shoyu Watanabe, Masayuki Imaizumi
  • Publication number: 20130020587
    Abstract: A semiconductor device includes a semiconductor substrate of a first conductivity type, a drift layer of the first conductivity type which is formed on a first main surface of the semiconductor substrate, a second well region of a second conductivity type which is formed to surround a cell region of the drift layer, and a source pad for electrically connecting the second well regions and a source region of the cell region through a first well contact hole provided to penetrate a gate insulating film on the second well region, a second well contact hole provided to penetrate a field insulating film on the second well region and a source contact hole.
    Type: Application
    Filed: February 8, 2011
    Publication date: January 24, 2013
    Applicant: Mitsubishi Electric Corporation
    Inventors: Shiro Hino, Naruhisa Miura, Shuhei Nakata, Kenichi Ohtsuka, Shoyu Watanabe, Akihiko Furukawa, Yukiyasu Nakao, Masayuki Imaizumi
  • Publication number: 20130020586
    Abstract: A semiconductor device having a low feedback capacitance and a low switching loss. The semiconductor device includes: a substrate; a drift layer formed on a surface of the semiconductor substrate; a plurality of first well regions formed on a surface of the drift layer; a source region which is an area formed on a surface of each of the first well regions and defining, as a channel region, the surface of each of the first well regions interposed between the area and the drift layer; a gate electrode formed over the channel region and the drift layer thereacross through a gate insulating film; and second well regions buried inside the drift layer below the gate electrode and formed to be individually connected to each of the first well regions adjacent to one another.
    Type: Application
    Filed: April 7, 2011
    Publication date: January 24, 2013
    Applicant: Mitsubishi Electric Corporation
    Inventors: Naruhisa Miura, Shuhei Nakata, Kenichi Ohtsuka, Shoyu Watanabe, Hiroshi Watanabe
  • Patent number: 8350270
    Abstract: A silicon carbide MOSFET that exhibits a high source-to-drain withstand voltage and that involves a smaller difference between gate-to-drain capacitance achieved in an activated state and gate-to-drain capacitance achieved in a deactivated state. A silicon carbide drift layer of a first conductivity type is provided on a silicon carbide substrate of a first conductivity type; a pair of base regions are provided in a surface layer portion of the silicon carbide drift layer and exhibit a second conductivity type; a pair of source regions are provided in interiors of surface layer portions of the pair of base regions and exhibit a first conductivity type; and semi-insulating regions are provided between the silicon carbide substrate and the pair of base regions.
    Type: Grant
    Filed: March 4, 2009
    Date of Patent: January 8, 2013
    Assignee: Mitsubishi Electric Corporation
    Inventors: Shoyu Watanabe, Shuhei Nakata, Kenichi Ohtsuka
  • Publication number: 20120205669
    Abstract: In a semiconductor device according to the present invention, a p-type well region disposed in an outer peripheral portion of the power semiconductor device is divided into two parts, that is, an inside and an outside, and a field oxide film having a greater film thickness than the gate insulating film is provided on a well region at the outside to an inside of an inner periphery of the well region. Therefore, it is possible to prevent, in the gate insulating film, a dielectric breakdown due to the voltage generated by the flow of the displacement current in switching.
    Type: Application
    Filed: October 14, 2009
    Publication date: August 16, 2012
    Applicant: Mitsubishi Electric Corporation
    Inventors: Naruhisa Miura, Shuhei Nakata, Kenichi Ohtsuka, Shoyu Watanabe, Shiro Hino, Akihiko Furukawa
  • Publication number: 20120061688
    Abstract: In a power semiconductor device that switches at a high speed, a displacement current flows at a time of switching, so that a high voltage occurs which may cause breakdown of a thin insulating film such as a gate insulating film.
    Type: Application
    Filed: July 15, 2009
    Publication date: March 15, 2012
    Applicant: Mitsubishi Electric Corporation
    Inventors: Shoyu Watanabe, Shuhei Nakata, Naruhisa Miura
  • Publication number: 20110284874
    Abstract: In a cell region of a first major surface of a semiconductor substrate of a first conductivity type, a first well of a second conductivity type is in an upper surface. A diffusion region of a first conductivity type is in the upper surface in the first well. A first gate insulating film is on the first well, and a first gate electrode on the first gate insulating film. A second well of a second conductivity type is in the upper surface of the first major surface on a peripheral portion of the cell region. A second gate insulating film is on the second well, and a thick field oxide film is on the peripheral side than the second gate insulating film. A second gate electrode is sequentially on the second gate insulating film and the field oxide film and electrically connected to the first gate electrode. A first electrode is connected to the first, second well and the diffusion region. A second electrode is connected on a second major surface of the semiconductor substrate.
    Type: Application
    Filed: April 30, 2009
    Publication date: November 24, 2011
    Applicant: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Naruhisa Miura, Shuhei Nakata, Kenichi Ohtsuka, Shoyu Watanabe, Naoki Yutani