Patents by Inventor Shreeyukta Singh

Shreeyukta Singh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190341650
    Abstract: In some embodiments, a lithium ion battery includes a first substrate, a cathode, a second substrate, an anode, and an electrolyte. The cathode is arranged on the first substrate and can contain a cathode mixture including LixSy, wherein x is from 0 to 2 and y is from 1 to 8, and a first particulate carbon. The anode is arranged on the second substrate and can contain an anode mixture containing silicon particles, and a second particulate carbon. The electrolyte can contain a solvent and a lithium salt, and is arranged between the cathode and the anode. In some embodiments, the first particulate carbon or the second particulate carbon contains carbon aggregates comprising a plurality of carbon nanoparticles, each carbon nanoparticle comprising graphene.
    Type: Application
    Filed: December 3, 2018
    Publication date: November 7, 2019
    Applicant: Lyten, Inc.
    Inventors: Bruce Lanning, Michael W. Stowell, Bryce H. Anzelmo, George Clayton Gibbs, Shreeyukta Singh, Hossein-Ali Ghezelbash, Prashanth Jampani Hanumantha, Daniel Cook, David Tanner
  • Publication number: 20190264004
    Abstract: Methods include producing a plurality of carbon particles in a plasma reactor, functionalizing the plurality of carbon particles in-situ in the plasma reactor to promote adhesion to a binder, and combining the plurality of carbon particles with the binder to form a composite material. The plurality of carbon particles comprises 3D graphene, where the 3D graphene comprises a pore matrix and graphene nanoplatelet sub-particles in the form of at least one of: single layer graphene, few layer graphene, or many layer graphene. Methods also include producing a plurality of carbon particles in a plasma reactor; functionalizing, in the plasma reactor, the plurality of carbon particles to promote chemical bonding with a resin; and combining, within the plasma reactor, the functionalized plurality of carbon particles with the resin to form a composite material.
    Type: Application
    Filed: February 25, 2019
    Publication date: August 29, 2019
    Applicant: Lyten, Inc.
    Inventors: Michael W. Stowell, Bryce H. Anzelmo, Bruce Lanning, Daniel Cook, Shreeyukta Singh
  • Patent number: 10373808
    Abstract: Carbon materials having carbon aggregates, where the aggregates include carbon nanoparticles and no seed particles, are disclosed. In various embodiments, the nanoparticles include graphene, optionally with multi-walled spherical fullerenes and/or another carbon allotrope. In various embodiments, the nanoparticles and aggregates have different combinations of: a Raman spectrum with a 2D-mode peak and a G-mode peak, and a 2D/G intensity ratio greater than 0.5, a low concentration of elemental impurities, a high Brunauer-Emmett and Teller (BET) surface area, a large particle size, and/or a high electrical conductivity. Methods are provided to produce the carbon materials.
    Type: Grant
    Filed: June 8, 2018
    Date of Patent: August 6, 2019
    Assignee: Lyten, Inc.
    Inventors: Bryce H. Anzelmo, Daniel Cook, Hossein-Ali Ghezelbash, Shreeyukta Singh, Michael W. Stowell, David Tanner
  • Publication number: 20190204265
    Abstract: A method for detecting an analyte comprises providing a first carbon-based material comprising reactive chemistry additives, providing conductive electrodes connected to the first carbon-based material, exposing the first carbon-based material to an analyte, applying a plurality of alternating currents having a range of frequencies across the conductive electrodes, and measuring the complex impedance of the first carbon-based material using the plurality of alternating currents.
    Type: Application
    Filed: January 3, 2019
    Publication date: July 4, 2019
    Applicant: Lyten, Inc.
    Inventors: Michael W. Stowell, Bruce Lanning, Sung H. Lim, Shreeyukta Singh, John Chmiola
  • Publication number: 20190173125
    Abstract: In some embodiments, a lithium ion battery includes a first substrate, a cathode, a second substrate, an anode, and an electrolyte. The cathode is arranged on the first substrate and can contain a cathode mixture including LixSy, wherein x is from 0 to 2 and y is from 1 to 8, and a first particulate carbon. The anode is arranged on the second substrate and can contain an anode mixture containing silicon particles, and a second particulate carbon. The electrolyte can contain a solvent and a lithium salt, and is arranged between the cathode and the anode. In some embodiments, the first particulate carbon or the second particulate carbon contains carbon aggregates comprising a plurality of carbon nanoparticles, each carbon nanoparticle comprising graphene.
    Type: Application
    Filed: December 3, 2018
    Publication date: June 6, 2019
    Applicant: Lyten, Inc.
    Inventors: Bruce Lanning, Michael W. Stowell, Bryce H. Anzelmo, Clayton Gibbs, Shreeyukta Singh, Hossein-Ali Ghezelbash, Prashanth Jampani Hanumantha, Daniel Cook, David Tanner
  • Publication number: 20190047863
    Abstract: A nanoparticle or agglomerate which contains connected multi-walled spherical fullerenes coated in layers of graphite. In different embodiments, the nanoparticles and agglomerates have different combinations of: a high mass fraction compared to other carbon allotropes present, a low concentration of defects, a low concentration of elemental impurities, a high Brunauer, Emmett and Teller (BET) specific surface area, and/or a high electrical conductivity. Methods are provided to produce the nanoparticles and agglomerates at a high production rate without using catalysts.
    Type: Application
    Filed: October 18, 2018
    Publication date: February 14, 2019
    Applicant: Lyten, Inc.
    Inventors: Daniel Cook, Hossein-Ali Ghezelbash, Bryce H. Anzelmo, David Tanner, Shreeyukta Singh
  • Patent number: 10112837
    Abstract: A nanoparticle or agglomerate which contains connected multi-walled spherical fullerenes coated in layers of graphite. In different embodiments, the nanoparticles and agglomerates have different combinations of: a high mass fraction compared to other carbon allotropes present, a low concentration of defects, a low concentration of elemental impurities, a high Brunauer, Emmett and Teller (BET) specific surface area, and/or a high electrical conductivity. Methods are provided to produce the nanoparticles and agglomerates at a high production rate without using catalysts.
    Type: Grant
    Filed: October 26, 2017
    Date of Patent: October 30, 2018
    Assignee: Lyten, Inc.
    Inventors: Daniel Cook, Hossein-Ali Ghezelbash, Bryce H. Anzelmo, David Tanner, Shreeyukta Singh
  • Publication number: 20180294142
    Abstract: Carbon materials having carbon aggregates, where the aggregates include carbon nanoparticles and no seed particles, are disclosed. In various embodiments, the nanoparticles include graphene, optionally with multi-walled spherical fullerenes and/or another carbon allotrope. In various embodiments, the nanoparticles and aggregates have different combinations of: a Raman spectrum with a 2D-mode peak and a G-mode peak, and a 2D/G intensity ratio greater than 0.5, a low concentration of elemental impurities, a high Brunauer-Emmett and Teller (BET) surface area, a large particle size, and/or a high electrical conductivity. Methods are provided to produce the carbon materials.
    Type: Application
    Filed: June 8, 2018
    Publication date: October 11, 2018
    Applicant: Lyten, Inc.
    Inventors: Bryce H. Anzelmo, Daniel Cook, Hossein-Ali Ghezelbash, Shreeyukta Singh, Michael W. Stowell, David Tanner
  • Publication number: 20180273386
    Abstract: A nanoparticle or agglomerate which contains connected multi-walled spherical fullerenes coated in layers of graphite. In different embodiments, the nanoparticles and agglomerates have different combinations of: a high mass fraction compared to other carbon allotropes present, a low concentration of defects, a low concentration of elemental impurities, a high Brunauer, Emmett and Teller (BET) specific surface area, and/or a high electrical conductivity. Methods are provided to produce the nanoparticles and agglomerates at a high production rate without using catalysts.
    Type: Application
    Filed: October 26, 2017
    Publication date: September 27, 2018
    Applicant: Lyten, Inc.
    Inventors: Daniel Cook, Hossein-Ali Ghezelbash, Bryce H. Anzelmo, David Tanner, Shreeyukta Singh
  • Publication number: 20180248175
    Abstract: Mixed allotrope particulate carbon films and carbon fiber mats including partially ordered carbon materials or fibers, a plurality of highly ordered carbon aggregates, and a plurality of active materials particles are disclosed. In various embodiments, the highly ordered carbon aggregates comprise graphene with no seed particles. In various embodiments, the active materials particles comprise silicon.
    Type: Application
    Filed: February 26, 2018
    Publication date: August 30, 2018
    Applicant: Lyten, Inc.
    Inventors: Hossein-Ali Ghezelbash, Clayton Gibbs, Prashanth Jampani Hanumantha, Shreeyukta Singh, David Tanner
  • Patent number: 9997334
    Abstract: Carbon materials having carbon aggregates, where the aggregates include carbon nanoparticles and no seed particles, are disclosed. In various embodiments, the nanoparticles include graphene, optionally with multi-walled spherical fullerenes and/or another carbon allotrope. In various embodiments, the nanoparticles and aggregates have different combinations of: a Raman spectrum with a 2D-mode peak and a G-mode peak, and a 2D/G intensity ratio greater than 0.5, a low concentration of elemental impurities, a high Brunauer-Emmett and Teller (BET) surface area, a large particle size, and/or a high electrical conductivity. Methods are provided to produce the carbon materials.
    Type: Grant
    Filed: September 21, 2017
    Date of Patent: June 12, 2018
    Assignee: Lyten, Inc.
    Inventors: Bryce H. Anzelmo, Daniel Cook, Hossein-Ali Ghezelbash, Shreeyukta Singh, Michael W. Stowell, David Tanner
  • Patent number: 9862606
    Abstract: A nanoparticle or agglomerate which contains connected multi-walled spherical fullerenes coated in layers of graphite. In different embodiments, the nanoparticles and agglomerates have different combinations of: a high mass fraction compared to other carbon allotropes present, a low concentration of defects, a low concentration of elemental impurities, a high Brunauer, Emmett and Teller (BET) specific surface area, and/or a high electrical conductivity. Methods are provided to produce the nanoparticles and agglomerates at a high production rate without using catalysts.
    Type: Grant
    Filed: May 12, 2017
    Date of Patent: January 9, 2018
    Assignee: Lyten, Inc.
    Inventors: Daniel Cook, Hossein-Ali Ghezelbash, Bryce H. Anzelmo, David Tanner, Shreeyukta Singh