Patents by Inventor Shreya Singh

Shreya Singh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240088547
    Abstract: A multi-band antenna system is provided. The antenna system can be placed under and embedded within a glass exterior surface of a vehicle. Such an antenna system can include a capacitively coupled metallic element on or adjacent to the glass exterior surface, which can serve as both a parasitic element to enhance gain and as a heating element to melt snow and/or ice accumulation over the glass area that covers the antenna. In certain applications, the antenna's structure itself can be used as a heater to improve performance in adverse weather conditions while the heating elements are positioned away from the thermally sensitive electronics. The antenna system with integrated heating can include a spiral antenna.
    Type: Application
    Filed: January 19, 2022
    Publication date: March 14, 2024
    Inventors: Anand S. Konanur, Shreya Singh, Richard Breden, Yasutaka Horiki, Aycan Erentok, George Zucker, Nagarjun Bhat, Rui Moreira, Aydin Nabovati, Rishabh Bhandari, Austin Rothschild, Jae Hoon Yoo, Loic Le Toumelin
  • Publication number: 20240045753
    Abstract: A method of dynamic configuration of reaction policies in virtualized fault management system includes disabling a fault handler circuit comprising a reaction core in response to receiving a request to modify a respective first reaction policy including a plurality of first recovery actions of the reaction core, wherein each of the first recovery actions is responsive to a respective fault indication. At least one event status is cleared from an event table of the fault handler circuit. The at least one event status is set in response to the fault handler circuit receiving the respective fault indication. The reaction core is configured with a second reaction policy including a plurality of second recovery actions.
    Type: Application
    Filed: August 2, 2022
    Publication date: February 8, 2024
    Inventors: Shreya Singh, Sandeep Kumar Arya, Hemant Nautiyal
  • Patent number: 11663369
    Abstract: During operation, the system uses N sensors to sample an electromagnetic interference (EMI) signal emitted by a target asset while the target asset is running a periodic workload, wherein each of the N sensors has a sensor sampling frequency f, and wherein the N sensors perform sampling operations in a round-robin ordering with phase offsets between successive samples. During the sampling operations, the system performs phase adjustments among the N sensors to maximize phase offsets between successive sensors in the round-robin ordering. Next, the system combines samples obtained through the N sensors to produce a target EMI signal having an EMI signal sampling frequency F=f×N. The system then generates a target EMI fingerprint from the target EMI signal. Finally, the system compares the target EMI fingerprint against a reference EMI fingerprint for the target asset to determine whether the target asset contains any unwanted electronic components.
    Type: Grant
    Filed: November 5, 2020
    Date of Patent: May 30, 2023
    Assignee: Oracle International Corporation
    Inventors: Matthew T. Gerdes, Kenny C. Gross, Guang C. Wang, Shreya Singh, Aleksey M. Urmanov
  • Patent number: 11636037
    Abstract: Exemplary aspects for a specific example concern a radar system having sensor circuitry including multiple radar sensors to provide sensor data via multiple virtual channels and multiple data types, a memory circuit with memory buffers, and a bus-interface circuit to control bus interconnects for bus communications involving a radar signal transmitter and the memory circuit. Radar signals are received and processed, via data acquisition path circuitry in multiple circuit paths and via streams of data in response to and to accommodate the operations of the sensor circuitry. A master controller conveys data, via the bus-interface circuit, to the buffers for the sensor data, and generates selectable-type transactions to be linked in selected ones of the buffers, in response to the data provided from the sensor circuitry and based on the sensor data being provided via different ones of the multiple virtual channels and of the multiple data types.
    Type: Grant
    Filed: April 16, 2021
    Date of Patent: April 25, 2023
    Assignee: NXP USA, Inc.
    Inventors: Maik Brett, Naveen Kumar Jain, Shreya Singh, Anshul Goel
  • Patent number: 11604686
    Abstract: A method of acquiring data, a computer program product for implementing the method, a system for acquiring data, and a vehicle including the system. The method includes determining one or more data types and virtual channels required for one or more applications. The method also includes allocating a plurality of circular buffers in memory according to the determined data type(s) and virtual channel(s). One or more of the circular buffers are allocated to safety data lines. The remaining circular buffers are allocated to functional data lines. The method further includes storing at least one functional data line in a circular buffer allocated to functional data lines according to a data type and virtual channel of the functional data line. The method also includes storing at least one safety data line in a circular buffer allocated to safety data lines.
    Type: Grant
    Filed: May 26, 2020
    Date of Patent: March 14, 2023
    Assignee: NXP USA, Inc.
    Inventors: Shreya Singh, Maik Brett, Arpita Agarwal, Shivali Jain, Anshul Goel, Naveen Kumar Jain
  • Patent number: 11399084
    Abstract: A MIPI CSI-2/D-PHY receiving device is configured to handle being hot plugged to MIPI CSI-2/D-PHY transmitting device. During a hot plugging event, the MIPI CSI-2/D-PHY receiving device has not been initialized by receipt from the MIPI CSI-2/D-PHY transmitting device of a Stop State signal of duration TINIT. Though the MIPI CSI-2/D-PHY transmitting device is already transmitting data associated with a partial frame, the MIPI CSI-2/D-PHY receiving device will not enter into an error or unknown state, and will ignore line start/end and frame end events and drop the data packets associated with the partial frame until a frame start event corresponding to a full frame is received from the MIPI CSI-2/D-PHY transmitting device.
    Type: Grant
    Filed: May 12, 2020
    Date of Patent: July 26, 2022
    Assignee: NXP USA, Inc.
    Inventors: Joachim Fader, Naveen Kumar Jain, Shreya Singh, Thomas John Rodriguez, Shivali Jain
  • Publication number: 20220197804
    Abstract: Exemplary aspects for a specific example concern a radar system having sensor circuitry including multiple radar sensors to provide sensor data via multiple virtual channels and multiple data types, a memory circuit with memory buffers, and a bus-interface circuit to control bus interconnects for bus communications involving a radar signal transmitter and the memory circuit. Radar signals are received and processed, via data acquisition path circuitry in multiple circuit paths and via streams of data in response to and to accommodate the operations of the sensor circuitry. A master controller conveys data, via the bus-interface circuit, to the buffers for the sensor data, and generates selectable-type transactions to be linked in selected ones of the buffers, in response to the data provided from the sensor circuitry and based on the sensor data being provided via different ones of the multiple virtual channels and of the multiple data types.
    Type: Application
    Filed: April 16, 2021
    Publication date: June 23, 2022
    Inventors: Maik Brett, Naveen Kumar Jain, Shreya Singh, Anshul Goel
  • Patent number: 11334409
    Abstract: A fault collection and reaction system on a system-on-chip (SoC) includes a plurality of reaction cores assigned to a plurality of applications being executed by a plurality of processor cores on the SoC, at least one look-up table (LUT), and a controller. The at least one LUT stores therein a first mapping between the plurality of reaction cores and corresponding plurality of domain identifiers, and a second mapping between a plurality of faults and a set of reaction combinations. The controller receives a fault indication and a first domain identifier in response to occurrence of a first fault and selects from the plurality of reaction cores, a first reaction core mapped to the first domain identifier, and from the set of reaction combinations, a first reaction combination mapped to the first fault. The first reaction core responds to the fault indication with a reaction based on the selected reaction combination.
    Type: Grant
    Filed: August 26, 2020
    Date of Patent: May 17, 2022
    Assignee: NXP USA, INC.
    Inventors: Hemant Nautiyal, Jehoda Refaeli, Ankush Sethi, Shreya Singh
  • Publication number: 20220138358
    Abstract: During operation, the system uses N sensors to sample an electromagnetic interference (EMI) signal emitted by a target asset while the target asset is running a periodic workload, wherein each of the N sensors has a sensor sampling frequency f, and wherein the N sensors perform sampling operations in a round-robin ordering with phase offsets between successive samples. During the sampling operations, the system performs phase adjustments among the N sensors to maximize phase offsets between successive sensors in the round-robin ordering. Next, the system combines samples obtained through the N sensors to produce a target EMI signal having an EMI signal sampling frequency F=f×N. The system then generates a target EMI fingerprint from the target EMI signal. Finally, the system compares the target EMI fingerprint against a reference EMI fingerprint for the target asset to determine whether the target asset contains any unwanted electronic components.
    Type: Application
    Filed: November 5, 2020
    Publication date: May 5, 2022
    Applicant: Oracle International Corporation
    Inventors: Matthew T. Gerdes, Kenny C. Gross, Guang C. Wang, Shreya Singh, Aleksey M. Urmanov
  • Publication number: 20210397502
    Abstract: A fault collection and reaction system on a system-on-chip (SoC) includes a plurality of reaction cores assigned to a plurality of applications being executed by a plurality of processor cores on the SoC, at least one look-up table (LUT), and a controller. The at least one LUT stores therein a first mapping between the plurality of reaction cores and corresponding plurality of domain identifiers, and a second mapping between a plurality of faults and a set of reaction combinations. The controller receives a fault indication and a first domain identifier in response to occurrence of a first fault and selects from the plurality of reaction cores, a first reaction core mapped to the first domain identifier, and from the set of reaction combinations, a first reaction combination mapped to the first fault. The first reaction core responds to the fault indication with a reaction based on the selected reaction combination.
    Type: Application
    Filed: August 26, 2020
    Publication date: December 23, 2021
    Inventors: Hemant Nautiyal, Jehoda Refaeli, Ankush Sethi, Shreya Singh
  • Publication number: 20210360090
    Abstract: A MIPI CSI-2/D-PHY receiving device is configured to handle being hot plugged to MIPI CSI-2/D-PHY transmitting device. During a hot plugging event, the MIPI CSI-2/D-PHY receiving device has not been initialized by receipt from the MIPI CSI-2/D-PHY transmitting device of a Stop State signal of duration TINIT. Though the MIPI CSI-2/D-PHY transmitting device is already transmitting data associated with a partial frame, the MIPI CSI-2/D-PHY receiving device will not enter into an error or unknown state, and will ignore line start/end and frame end events and drop the data packets associated with the partial frame until a frame start event corresponding to a full frame is received from the MIPI CSI-2/D-PHY transmitting device.
    Type: Application
    Filed: May 12, 2020
    Publication date: November 18, 2021
    Applicant: NXP USA, Inc.
    Inventors: Joachim Fader, Naveen Kumar Jain, Shreya Singh, Thomas John Rodriguez, Shivali Jain
  • Patent number: 11175689
    Abstract: A communication system including a physical layer circuit, a timer circuit, and a turnaround controller. The physical layer circuit provides an early turnaround indication upon detection of a turnaround command and before completion of the turnaround command. The timer circuit is programmed with a timeout value indicative of a maximum time of a turnaround procedure initiated by the turnaround command. The turnaround controller starts the timer circuit in response to the early turnaround indication. A transmit controller may begin retrieving information to transmit from a memory in response to the early turnaround indication, and may begin transmitting the retrieved information if the turnaround procedure completes before timeout of the timer circuit. The retrieved information may be configuration information for a sensor. The turnaround controller provides an error indication if the timer circuit times out indicating a turnaround error. The error indication enables remedial action to be taken.
    Type: Grant
    Filed: March 17, 2020
    Date of Patent: November 16, 2021
    Assignee: NXP USA, Inc.
    Inventors: Maik Brett, Naveen Kumar Jain, Shreya Singh, Anshul Goel
  • Patent number: 11175340
    Abstract: A system-on-chip (SoC) is disclosed. The SoC includes a set of fake fault injection circuits and a critical intellectual property (IP) core that includes first and second control circuits. The first and second control circuits are each operable in a test mode and a functional mode. The first and second control circuits are operated in the functional mode in lockstep in an absence of a fake fault input. In a presence of the fake fault input, one of the first and second control circuits is switched from the functional mode to the test mode. One of the first and second control circuits operating the test mode generates a fake fault response for the fake fault input. The critical IP core is determined as one of error-free and erroneous based on a detection of the generated fake fault response as one of error-free and erroneous, respectively.
    Type: Grant
    Filed: February 15, 2021
    Date of Patent: November 16, 2021
    Assignee: NXP B.V.
    Inventors: Neha Srivastava, Shreya Singh
  • Patent number: 11176386
    Abstract: A radar and/or camera system may include a receiver subsystem that receives image and/or radar data from one or more imaging/radar subsystems via multiple data lanes. A vision processor of the system may receive a data stream that includes the image and/or radar data and one or more synchronization signals including a vertical sync signal. The receiver subsystem may include a timing event generator that toggles the vertical sync signal in response to detecting certain timing event errors in order to correct these timing event errors without interrupting normal operation of the system. The receiver subsystem may include sync monitoring circuitry that may detect synchronization errors that occur when synchronization signal pulses received by the receiver subsystem do not match a predefined synchronization pattern within a scan window of predefined length. The system may be reset in response to detection of such synchronization errors.
    Type: Grant
    Filed: July 8, 2019
    Date of Patent: November 16, 2021
    Assignee: NXP USA, Inc.
    Inventors: Pavel Bohacik, Shreya Singh, Nishant Jain, Anshul Goel, Shivali Jain, Naveen Kumar Jain
  • Publication number: 20210294375
    Abstract: A communication system including a physical layer circuit, a timer circuit, and a turnaround controller. The physical layer circuit provides an early turnaround indication upon detection of a turnaround command and before completion of the turnaround command. The timer circuit is programmed with a timeout value indicative of a maximum time of a turnaround procedure initiated by the turnaround command. The turnaround controller starts the timer circuit in response to the early turnaround indication. A transmit controller may begin retrieving information to transmit from a memory in response to the early turnaround indication, and may begin transmitting the retrieved information if the turnaround procedure completes before timeout of the timer circuit. The retrieved information may be configuration information for a sensor. The turnaround controller provides an error indication if the timer circuit times out indicating a turnaround error. The error indication enables remedial action to be taken.
    Type: Application
    Filed: March 17, 2020
    Publication date: September 23, 2021
    Inventors: Maik Brett, Naveen Kumar Jain, Shreya Singh, Anshul Goel
  • Patent number: 11054498
    Abstract: System and method of configuring an external radar device through high speed reverse data transmission. In one embodiment, the system includes a radar data processing module for processing radar data received from the external radar device, and a radar configuration management module for generating control data for controlling the external radar device. The system further includes a configurable half-duplex interface, wherein the configurable half-duplex interface, in response to receiving a turnaround command, switches between (1) a configuration for transmitting control data packets to the external radar device via a communication link, and (2) a configuration for receiving radar data packets from the external radar device via the communication link.
    Type: Grant
    Filed: January 22, 2019
    Date of Patent: July 6, 2021
    Assignee: NXP USA, Inc.
    Inventors: Maik Brett, Naveen Kumar Jain, Shreya Singh
  • Publication number: 20210012118
    Abstract: A radar and/or camera system may include a receiver subsystem that receives image and/or radar data from one or more imaging/radar subsystems via multiple data lanes. A vision processor of the system may receive a data stream that includes the image and/or radar data and one or more synchronization signals including a vertical sync signal. The receiver subsystem may include a timing event generator that toggles the vertical sync signal in response to detecting certain timing event errors in order to correct these timing event errors without interrupting normal operation of the system. The receiver subsystem may include sync monitoring circuitry that may detect synchronization errors that occur when synchronization signal pulses received by the receiver subsystem do not match a predefined synchronization pattern within a scan window of predefined length. The system may be reset in response to detection of such synchronization errors.
    Type: Application
    Filed: July 8, 2019
    Publication date: January 14, 2021
    Inventors: Pavel BOHACIK, Shreya SINGH, Nishant JAIN, Anshul GOEL, Shivali JAIN, Naveen Kumar JAIN
  • Patent number: 10891245
    Abstract: A video device is described that includes: a host processor comprising at least one input video port configured to receive a plurality of video data signals that comprise video data and embedded data from a plurality of virtual channels in a received frame; and a memory operably coupled to the host processor and configured to receive and store video data. The host processor is configured to segregate the video data from the embedded data in the received frame and process the embedded data individually.
    Type: Grant
    Filed: May 17, 2018
    Date of Patent: January 12, 2021
    Assignee: NXP USA, Inc.
    Inventors: Stephan Matthias Herrmann, Naveen Kumar Jain, Shivali Jain, Shreya Singh
  • Patent number: 10862830
    Abstract: A system and method for real-time data transfer on a system-on-chip (SoC) allows MIPI-CSI (camera serial interface) data received on a first interface to be output on another MIPI-CSI interface without using system memory or delaying the loopback path. The system includes a CSI receiver, a loopback buffer, and a CSI transmitter. The loopback buffer is used for the data transfer between the CSI receiver and the CSI transmitter. The CSI transmitter receives a payload included in a data packet from the CSI receiver by way of the loopback buffer. The CSI receiver communicates a packet header of the data packet to the CSI transmitter. The CSI transmitter reads the payload from the loopback buffer based on the packet header and at least one of a buffer threshold capacity and payload size.
    Type: Grant
    Filed: December 17, 2018
    Date of Patent: December 8, 2020
    Assignee: NXP USA, INC.
    Inventors: Naveen Kumar Jain, Joachim Fader, Shreya Singh, Nishant Jain, Anshul Goel
  • Publication number: 20200379827
    Abstract: A method of acquiring data, a computer program product for implementing the method, a system for acquiring data, and a vehicle including the system. The method includes determining one or more data types and virtual channels required for one or more applications. The method also includes allocating a plurality of circular buffers in memory according to the determined data type(s) and virtual channel(s). One or more of the circular buffers are allocated to safety data lines. The remaining circular buffers are allocated to functional data lines. The method further includes storing at least one functional data line in a circular buffer allocated to functional data lines according to a data type and virtual channel of the functional data line. The method also includes storing at least one safety data line in a circular buffer allocated to safety data lines.
    Type: Application
    Filed: May 26, 2020
    Publication date: December 3, 2020
    Inventors: Shreya Singh, Maik Brett, Arpita Agarwal, Shivali Jain, Anshul Goel, Naveen Kumar Jain