Patents by Inventor Shreyans Shingi

Shreyans Shingi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220352598
    Abstract: Nanoporous composite separators are disclosed for use in batteries and capacitors comprising a nanoporous inorganic material and an organic polymer material. The inorganic material may comprise Al2O3, AlO(OH) or boehmite, AlN, BN, SiN, ZnO, ZrO2, SiO2, or combinations thereof. The nanoporous composite separator may have a porosity of between 35-50%. The average pore size of the nanoporous composite separator may be between 10-90 nm. The separator may be formed by coating a substrate with a dispersion including the inorganic material, organic material, and a solvent. Once dried, the coating may be removed from the substrate, thus forming the nanoporous composite separator. A nanoporous composite separator may provide increased thermal conductivity and dimensional stability at temperatures above 200° C. compared to polyolefin separators.
    Type: Application
    Filed: July 11, 2022
    Publication date: November 3, 2022
    Applicant: Meta Materials Inc.
    Inventors: David W. Avison, Shreyans Shingi, Chandrakant C. Patel, Charles R. Comeau, JR., Samuel Lim
  • Patent number: 11387521
    Abstract: Nanoporous composite separators are disclosed for use in batteries and capacitors comprising a nanoporous inorganic material and an organic polymer material. The inorganic material may comprise Al2O3, AlO(OH) or boehmite, AlN, BN, SiN, ZnO, ZrO2, SiO2, or combinations thereof. The nanoporous composite separator may have a porosity of between 35-50%. The average pore size of the nanoporous composite separator may be between 10-90 nm. The separator may be formed by coating a substrate with a dispersion including the inorganic material, organic material, and a solvent. Once dried, the coating may be removed from the substrate, thus forming the nanoporous composite separator. A nanoporous composite separator may provide increased thermal conductivity and dimensional stability at temperatures above 200° C. compared to polyolefin separators.
    Type: Grant
    Filed: December 28, 2021
    Date of Patent: July 12, 2022
    Assignee: Optodot Corporation
    Inventors: David W. Avison, Shreyans Shingi, Chandrakant C. Patel, Charles R. Comeau, Jr., Samuel Lim
  • Publication number: 20220123434
    Abstract: Nanoporous composite separators are disclosed for use in batteries and capacitors comprising a nanoporous inorganic material and an organic polymer material. The inorganic material may comprise Al2O3, AlO(OH) or boehmite, AlN, BN, SiN, ZnO, ZrO2, SiO2, or combinations thereof. The nanoporous composite separator may have a porosity of between 35-50%. The average pore size of the nanoporous composite separator may be between 10-90 nm. The separator may be formed by coating a substrate with a dispersion including the inorganic material, organic material, and a solvent. Once dried, the coating may be removed from the substrate, thus forming the nanoporous composite separator. A nanoporous composite separator may provide increased thermal conductivity and dimensional stability at temperatures above 200° C. compared to polyolefin separators.
    Type: Application
    Filed: December 28, 2021
    Publication date: April 21, 2022
    Inventors: David W. Avison, Shreyans Shingi, Chandrakant C. Patel, Charles R. Comeau, JR., Samuel Lim
  • Patent number: 11217859
    Abstract: Nanoporous composite separators are disclosed for use in batteries and capacitors comprising a nanoporous inorganic material and an organic polymer material. The inorganic material may comprise Al2O3, AlO(OH) or boehmite, AlN, BN, SiN, ZnO, ZrO2, SiO2, or combinations thereof. The nanoporous composite separator may have a porosity of between 35-50%. The average pore size of the nanoporous composite separator may be between 10-90 nm. The separator may be formed by coating a substrate with a dispersion including the inorganic material, organic material, and a solvent. Once dried, the coating may be removed from the substrate, thus forming the nanoporous composite separator. A nanoporous composite separator may provide increased thermal conductivity and dimensional stability at temperatures above 200° C. compared to polyolefin separators.
    Type: Grant
    Filed: July 13, 2020
    Date of Patent: January 4, 2022
    Assignee: OPTODOT CORPORATION
    Inventors: David W. Avison, Shreyans Shingi, Chandrakant C. Patel, Charles R. Comeau, Jr., Samuel Lim
  • Patent number: 10879513
    Abstract: Nanoporous composite separators are disclosed for use in batteries and capacitors comprising a nanoporous inorganic material and an organic polymer material. The inorganic material may comprise Al2O3, AlO(OH) or boehmite, AlN, BN, SiN, ZnO, ZrO2, SiO2, or combinations thereof. The nanoporous composite separator may have a porosity of between 35-50%. The average pore size of the nanoporous composite separator may be between 10-90 nm. The separator may be formed by coating a substrate with a dispersion including the inorganic material, organic material, and a solvent. Once dried, the coating may be removed from the substrate, thus forming the nanoporous composite separator. A nanoporous composite separator may provide increased thermal conductivity and dimensional stability at temperatures above 200° C. compared to polyolefin separators.
    Type: Grant
    Filed: April 29, 2014
    Date of Patent: December 29, 2020
    Assignee: Optodot Corporation
    Inventors: David W. Avison, Shreyans Shingi, Chandrakant C. Patel, Charles R. Comeau, Jr., Samuel Lim
  • Publication number: 20200343507
    Abstract: Nanoporous composite separators are disclosed for use in batteries and capacitors comprising a nanoporous inorganic material and an organic polymer material. The inorganic material may comprise Al2O3, AlO(OH) or boehmite, AlN, BN, SiN, ZnO, ZrO2, SiO2, or combinations thereof. The nanoporous composite separator may have a porosity of between 35-50%. The average pore size of the nanoporous composite separator may be between 10-90 nm. The separator may be formed by coating a substrate with a dispersion including the inorganic material, organic material, and a solvent. Once dried, the coating may be removed from the substrate, thus forming the nanoporous composite separator. A nanoporous composite separator may provide increased thermal conductivity and dimensional stability at temperatures above 200° C. compared to polyolefin separators.
    Type: Application
    Filed: July 13, 2020
    Publication date: October 29, 2020
    Inventors: David W. Avison, Shreyans Shingi, Chandrakant C. Patel, Charles R. Comeau, JR., Samuel Lim
  • Publication number: 20160104876
    Abstract: Nanoporous composite separators are disclosed for use in batteries and capacitors comprising a nanoporous inorganic material and an organic polymer material. The inorganic material may comprise Al2O3, AlO(OH) or boehmite, AlN, BN, SiN, ZnO, ZrO2, SiO2, or combinations thereof. The nanoporous composite separator may have a porosity of between 35-50%. The average pore size of the nanoporous composite separator may be between 10-90 nm. The separator may be formed by coating a substrate with a dispersion including the inorganic material, organic material, and a solvent. Once dried, the coating may be removed from the substrate, thus forming the nanoporous composite separator. A nanoporous composite separator may provide increased thermal conductivity and dimensional stability at temperatures above 200° C. compared to polyolefin separators.
    Type: Application
    Filed: April 29, 2014
    Publication date: April 14, 2016
    Applicant: OPTODOT CORPORATION
    Inventors: David W. Avison, Shreyans Shingi, Chandrakant C. Patel, Charles R. Comeau, JR., Samuel Lim