Patents by Inventor Shreyas S. Kher

Shreyas S. Kher has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8323754
    Abstract: In one embodiment, a method for forming a dielectric stack on a substrate is provided which includes depositing a first layer of a dielectric material on a substrate surface, exposing the first layer to a nitridation process, depositing a second layer of the dielectric material on the first layer, exposing the second layer to the nitridation process, and exposing the substrate to an anneal process. In another embodiment, a method for forming a dielectric material on a substrate is provided which includes depositing a metal oxide layer substantially free of silicon on a substrate surface, exposing the metal oxide layer to a nitridation process, and exposing the substrate to an anneal process.
    Type: Grant
    Filed: May 21, 2004
    Date of Patent: December 4, 2012
    Assignee: Applied Materials, Inc.
    Inventors: Christopher Olsen, Pravin K. Narwankar, Shreyas S. Kher, Randhir Thakur, Shankar Muthukrishnan, Philip A. Kraus
  • Patent number: 8163343
    Abstract: Methods of forming aluminum oxide layers on substrates are disclosed. In some embodiments, the method includes depositing an aluminum oxide seed layer on the substrate using a first process having a first deposition rate. The method further includes depositing a bulk aluminum oxide layer atop the seed layer using a metalorganic chemical vapor deposition (MOCVD) process having a second deposition rate greater than the first deposition rate.
    Type: Grant
    Filed: September 3, 2008
    Date of Patent: April 24, 2012
    Assignee: Applied Materials, Inc.
    Inventors: Shreyas S. Kher, Christopher S. Olsen, Lucien Date
  • Patent number: 8071167
    Abstract: Embodiments of the present invention relate to a surface preparation treatment for the formation of thin films of high k dielectric materials over substrates. One embodiment of a method of forming a high k dielectric layer over a substrate includes pre-cleaning a surface of a substrate to remove native oxides, pre-treating the surface of the substrate with a hydroxylating agent, and forming a high k dielectric layer over the surface of the substrate. One embodiment of a method of forming a hafnium containing layer over a substrate includes introducing an acid solution to a surface of a substrate, introducing a hydrogen containing gas and an oxygen containing gas to the surface of the substrate, and forming a hafnium containing layer over the substrate.
    Type: Grant
    Filed: June 4, 2010
    Date of Patent: December 6, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Shreyas S. Kher, Shixue Han, Craig R. Metzner
  • Patent number: 8043907
    Abstract: Embodiments of the invention provide memory devices and methods for forming such memory devices. In one embodiment, a method for fabricating a non-volatile memory device on a substrate is provided which includes depositing a first polysilicon layer on a substrate surface, depositing a silicon oxide layer on the first polysilicon layer, depositing a first silicon oxynitride layer on the silicon oxide layer, depositing a silicon nitride layer on the first silicon oxynitride layer, depositing a second silicon oxynitride layer on the silicon nitride layer, and depositing a second polysilicon layer on the second silicon oxynitride layer. In some examples, the first polysilicon layer is a floating gate and the second polysilicon layer is a control gate.
    Type: Grant
    Filed: January 14, 2010
    Date of Patent: October 25, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Yi Ma, Shreyas S. Kher, Khaled Ahmed, Tejal Goyani, Maitreyee Mahajani, Jallepally Ravi, Yi-Chiau Huang
  • Patent number: 7871942
    Abstract: Processes for making a high K (dielectric constant) film using an ultra-high purity hafnium containing organometallic compound are disclosed. Also described are devices incorporating high K films made with high purity hafnium containing organometallic compounds.
    Type: Grant
    Filed: March 27, 2008
    Date of Patent: January 18, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Shreyas S. Kher, Pravin K. Narwankar, Khaled Z. Ahmed, Yi Ma
  • Publication number: 20100239758
    Abstract: Embodiments of the present invention relate to a surface preparation treatment for the formation of thin films of high k dielectric materials over substrates. One embodiment of a method of forming a high k dielectric layer over a substrate includes pre-cleaning a surface of a substrate to remove native oxides, pre-treating the surface of the substrate with a hydroxylating agent, and forming a high k dielectric layer over the surface of the substrate. One embodiment of a method of forming a hafnium containing layer over a substrate includes introducing an acid solution to a surface of a substrate, introducing a hydrogen containing gas and an oxygen containing gas to the surface of the substrate, and forming a hafnium containing layer over the substrate.
    Type: Application
    Filed: June 4, 2010
    Publication date: September 23, 2010
    Inventors: Shreyas S. Kher, Shixue Han, Craig R. Metzner
  • Patent number: 7775508
    Abstract: A method and apparatus for providing a precursor to a process chamber is described. The apparatus comprises an ampoule capable of receiving either a liquid precursor source material or a solid precursor source material. The ampoule is capable of delivering either a liquid precursor material to a vaporizer coupled to the process chamber, or a vaporized or gaseous precursor material to the process chamber. The ampoule also includes a continuous level sensor to accurately monitor the level of precursor source material within the ampoule.
    Type: Grant
    Filed: October 31, 2006
    Date of Patent: August 17, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Kenric T. Choi, Pravin K. Narwankar, Shreyas S. Kher, Son T. Nguyen, Paul Deaton, Khai Ngo, Paul Chhabra, Alan H. Ouye, Dien-Yeh (Daniel) Wu
  • Publication number: 20100102376
    Abstract: Embodiments of the invention provide memory devices and methods for forming such memory devices. In one embodiment, a method for fabricating a non-volatile memory device on a substrate is provided which includes depositing a first polysilicon layer on a substrate surface, depositing a silicon oxide layer on the first polysilicon layer, depositing a first silicon oxynitride layer on the silicon oxide layer, depositing a silicon nitride layer on the first silicon oxynitride layer, depositing a second silicon oxynitride layer on the silicon nitride layer, and depositing a second polysilicon layer on the second silicon oxynitride layer. In some examples, the first polysilicon layer is a floating gate and the second polysilicon layer is a control gate.
    Type: Application
    Filed: January 14, 2010
    Publication date: April 29, 2010
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Yi Ma, Shreyas S. Kher, Khaled Ahmed, Tejal Goyani, Maitreyee Mahajani, Jallepally Ravi, Yi-Chiau Huang
  • Publication number: 20100055905
    Abstract: Methods of forming aluminum oxide layers on substrates are disclosed. In some embodiments, the method includes depositing an aluminum oxide seed layer on the substrate using a first process having a first deposition rate. The method further includes depositing a bulk aluminum oxide layer atop the seed layer using a metalorganic chemical vapor deposition (MOCVD) process having a second deposition rate greater than the first deposition rate.
    Type: Application
    Filed: September 3, 2008
    Publication date: March 4, 2010
    Applicant: APPLIED MATERIALS, INC.
    Inventors: SHREYAS S. KHER, CHRISTOPHER S. OLSEN, LUCIEN DATE
  • Patent number: 7659158
    Abstract: Embodiments of the invention provide memory devices and methods for forming memory devices. In one embodiment, a memory device is provided which includes a floating gate polysilicon layer disposed over source/drain regions of a substrate, a silicon oxynitride layer disposed over the floating gate polysilicon layer, a first aluminum oxide layer disposed over the silicon oxynitride layer, a hafnium silicon oxynitride layer disposed over the first aluminum oxide layer, a second aluminum oxide layer disposed over the hafnium silicon oxynitride layer, and a control gate polysilicon layer disposed over the second aluminum oxide layer. In another embodiment, a memory device is provided which includes a control gate polysilicon layer disposed over an inter-poly dielectric stack disposed over a silicon oxide layer disposed over the floating gate polysilicon layer. The inter-poly dielectric stack contains two silicon oxynitride layers separated by a silicon nitride layer.
    Type: Grant
    Filed: March 31, 2008
    Date of Patent: February 9, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Yi Ma, Shreyas S. Kher, Khaled Ahmed, Tejal Goyani, Maitreyee Mahajani, Jallepally Ravi, Yi-Chiau Huang
  • Publication number: 20090246972
    Abstract: Processes for making a high K (dielectric constant) film using an ultra-high purity hafnium containing organometallic compound are disclosed. Also described are devices incorporating high K films made with high purity hafnium containing organometallic compounds.
    Type: Application
    Filed: March 27, 2008
    Publication date: October 1, 2009
    Inventors: SHREYAS S. KHER, Pravin K. Narwankar, Khaled Z. Ahmed, Yi Ma
  • Publication number: 20090242957
    Abstract: Embodiments of the invention provide memory devices and methods for forming memory devices. In one embodiment, a memory device is provided which includes a floating gate polysilicon layer disposed over source/drain regions of a substrate, a silicon oxynitride layer disposed over the floating gate polysilicon layer, a first aluminum oxide layer disposed over the silicon oxynitride layer, a hafnium silicon oxynitride layer disposed over the first aluminum oxide layer, a second aluminum oxide layer disposed over the hafnium silicon oxynitride layer, and a control gate polysilicon layer disposed over the second aluminum oxide layer. In another embodiment, a memory device is provided which includes a control gate polysilicon layer disposed over an inter-poly dielectric stack disposed over a silicon oxide layer disposed over the floating gate polysilicon layer. The inter-poly dielectric stack contains two silicon oxynitride layers separated by a silicon nitride layer.
    Type: Application
    Filed: March 31, 2008
    Publication date: October 1, 2009
    Inventors: Yi Ma, Shreyas S. Kher, Khaled Ahmed, Tejal Goyani, Maitreyee Mahajani, Jallepally Ravi, Yi-Chiau Huang
  • Patent number: 7569500
    Abstract: Methods of forming metal compounds such as metal oxides or metal nitrides by sequentially introducing and then reacting metal organic compounds with ozone one or with oxygen radicals or nitrogen radicals formed in a remote plasma chamber. The metal compounds have surprisingly and significantly improved uniformity when deposited by atomic layer deposition with cycle times of at least 10 seconds. The metal compounds also do not contain detectable carbon when the metal organic compound is vaporized at process conditions in the absence of solvents or excess ligands.
    Type: Grant
    Filed: May 31, 2006
    Date of Patent: August 4, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Craig R. Metzner, Shreyas S. Kher, Vidyut Gopal, Shixue Han, Shankarram A. Athreya
  • Patent number: 7569501
    Abstract: Embodiments of the invention provide methods for forming hafnium materials, such as oxides and nitrides, by sequentially exposing a substrate to hafnium precursors and active oxygen or nitrogen species (e.g., ozone, oxygen radicals, or nitrogen radicals). The deposited hafnium materials have significantly improved uniformity when deposited by these atomic layer deposition (ALD) processes. In one embodiment, an ALD chamber contains an expanding channel having a bottom surface that is sized and shaped to substantially cover a substrate positioned on a substrate pedestal. During an ALD process for forming hafnium materials, process gases form a vortex flow pattern while passing through the expanding channel and sweep across the substrate surface. The substrate is sequentially exposed to chemical precursors that are pulsed into the process chamber having the vortex flow.
    Type: Grant
    Filed: May 31, 2006
    Date of Patent: August 4, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Craig R. Metzner, Shreyas S. Kher, Vidyut Gopal, Shixue Han, Shankarram A. Athreya
  • Patent number: 7531468
    Abstract: A method of forming a dielectric stack on a pre-treated surface. The method comprises pre-cleaning a semiconductor wafer to remove native oxide, such as by applying hydrofluoric acid to form an HF-last surface, pre-treating the HF-last surface with ozonated deionized water, forming a dielectric stack on the pre-treated surface and providing a flow of NH3 in a process zone surrounding the wafer. Alternately, the method includes pre-treating the HF-last surface with NH3, forming the stack after the pre-treating, and providing a flow of N2 in a process zone surrounding the wafer after the forming. The method also includes pre-treating the HF-last surface using an in-situ steam generation process, forming the stack on the pre-treated surface, and annealing the wafer after the forming.
    Type: Grant
    Filed: October 30, 2007
    Date of Patent: May 12, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Craig R. Metzner, Shreyas S. Kher, Shixue Han
  • Publication number: 20080099933
    Abstract: A method and apparatus for providing a precursor to a process chamber is described. The apparatus comprises an ampoule capable of receiving either a liquid precursor source material or a solid precursor source material. The ampoule is capable of delivering either a liquid precursor material to a vaporizer coupled to the process chamber, or a vaporized or gaseous precursor material to the process chamber. The ampoule also includes a continuous level sensor to accurately monitor the level of precursor source material within the ampoule.
    Type: Application
    Filed: October 31, 2006
    Publication date: May 1, 2008
    Inventors: Kenric T. Choi, Pravin K. Narwankar, Shreyas S. Kher, Son T. Nguyen, Paul Deaton, Khai Ngo, Paul Chhabra, Alan H. Ouye, Dien-Yeh (Daniel) Wu
  • Patent number: 7304004
    Abstract: A method of forming a dielectric stack on a pre-treated surface. The method comprises pre-cleaning a semiconductor wafer to remove native oxide, such as by applying hydroflouric acid to form an HF-last surface, pre-treating the HF-last surface with ozonated deionized water, forming a dielectric stack on the pre-treated surface and providing a flow of NH3 in a process zone surrounding the wafer. Alternately, the method includes pre-treating the HF-last surface with NH3, forming the stack after the pre-treating, and providing a flow of N2 in a process zone surrounding the wafer after the forming. The method also includes pre-treating the HF-last surface using an in-situ steam generation process, forming the stack on the pre-treated surface, and annealing the wafer after the forming.
    Type: Grant
    Filed: August 6, 2004
    Date of Patent: December 4, 2007
    Assignee: Applied Materials, Inc.
    Inventors: Craig R. Metzner, Shreyas S. Kher, Shixue Han
  • Patent number: 7067439
    Abstract: Methods of forming metal compounds such as metal oxides or metal nitrides by sequentially introducing and then reacting metal organic compounds with ozone or with oxygen radicals or nitrogen radicals formed in a remote plasma chamber. The metal compounds have surprisingly and significantly improved uniformity when deposited by atomic layer deposition with cycle times of at least 10 seconds. The metal compounds also do not contain detectable carbon when the metal organic compound is vaporized at process conditions in the absence of solvents or excess ligands.
    Type: Grant
    Filed: September 19, 2002
    Date of Patent: June 27, 2006
    Assignee: Applied Materials, Inc.
    Inventors: Craig R. Metzner, Shreyas S. Kher, Vidyut Gopal, Shixue Han, Shankarram A. Athreya
  • Patent number: 6858547
    Abstract: A method of forming a dielectric stack on a pre-treated surface. The method comprises pre-cleaning a semiconductor wafer to remove native oxide, such as by applying hydroflouric acid to form an HF-last surface, pre-treating the HF-last surface with ozonated deionized water, forming a dielectric stack on the pre-treated surface and providing a flow of NH3 in a process zone surrounding the wafer. Alternately, the method includes pre-treating the HF-last surface with NH3, forming the stack after the pre-treating, and providing a flow of N2 in a process zone surrounding the wafer after the forming. The method also includes pre-treating the HF-last surface using an in-situ steam generation process, forming the stack on the pre-treated surface, and annealing the wafer after the forming.
    Type: Grant
    Filed: September 27, 2002
    Date of Patent: February 22, 2005
    Assignee: Applied Materials, Inc.
    Inventors: Craig R. Metzner, Shreyas S. Kher, Shixue Han
  • Publication number: 20030232511
    Abstract: Methods of forming metal compounds such as metal oxides or metal nitrides by sequentially introducing and then reacting metal organic compounds with ozone or with oxygen radicals or nitrogen radicals formed in a remote plasma chamber. The metal compounds have surprisingly and significantly improved uniformity when deposited by atomic layer deposition with cycle times of at least 10 seconds. The metal compounds also do not contain detectable carbon when the metal organic compound is vaporized at process conditions in the absence of solvents or excess ligands.
    Type: Application
    Filed: September 19, 2002
    Publication date: December 18, 2003
    Applicant: Applied Materials, Inc.
    Inventors: Craig R. Metzner, Shreyas S. Kher, Vidyut Gopal, Shixue Han, Shankarram A. Athreya