Patents by Inventor Shruthi VENUGOPAL

Shruthi VENUGOPAL has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11726910
    Abstract: Examples include a computing system for receiving memory class of service parameters; setting performance monitoring configuration parameters, based at least in part on the memory class of service parameters, for use by a performance monitor of a memory controller to generate performance monitoring statistics by monitoring performance of one or more workloads by a plurality of processor cores based at least in part on the performance monitoring configuration parameters; receiving the performance monitoring statistics from the performance monitor; and generating, based at least in part on the performance monitoring statistics, a plurality of memory bandwidth settings to be applied by a memory bandwidth allocator to the plurality of processor cores to dynamically adjust priorities of memory bandwidth allocated for the one or more workloads to be processed by the plurality of processor cores.
    Type: Grant
    Filed: March 12, 2020
    Date of Patent: August 15, 2023
    Assignee: Intel Corporation
    Inventors: Ian M. Steiner, Andrew J. Herdrich, Wenhui Shu, Ripan Das, Dianjun Sun, Nikhil Gupta, Shruthi Venugopal
  • Publication number: 20220222176
    Abstract: Examples described herein relate to circuitry to utilize a proportional, derivative, integral neural network (PIDNN) controller to adjust one or more parameters allocated to a first group of one or more workloads based on one or more target parameters for a second group of one or more workloads. In some examples, the second group of one or more workloads are a same, lower, or higher priority level than that of the first group of one or more workloads.
    Type: Application
    Filed: March 31, 2022
    Publication date: July 14, 2022
    Inventors: Anna DREWEK-OSSOWICKA, Kamil Tomasz ANDRZEJEWSKI, Rameshkumar G. ILLIKKAL, Andrew J. HERDRICH, Slawomir PUTYRSKI, Shruthi VENUGOPAL
  • Publication number: 20220100247
    Abstract: Hierarchical Power Management (HPM) architecture considers the limits of scaling on a power management controller, the autonomy at each die, and provides a unified view of the package to a platform. At a simplest level, HPM architecture has a supervisor and one or more supervisee power management units (PMUs) that communicate via at least two different communication fabrics. Each PMU can behave as a supervisor for a number of supervisee PMUs in a particular domain. HPM addresses these needs for products that comprise a collection of dice with varying levels of power and thermal management capabilities and needs. HPM serves as a unified mechanism than can span collection of dice of varying capability and function, which together form a traditional system-on-chip (SoC). HPM provides a basis for managing power and thermals across a diverse set of dice.
    Type: Application
    Filed: September 26, 2020
    Publication date: March 31, 2022
    Applicant: Intel Corporation
    Inventors: Vivek Garg, Ankush Varma, Krishnakanth Sistla, Nikhil Gupta, Nikethan Shivanand Baligar, Stephen Wang, Nilanjan Palit, Timothy Kam, Adwait Purandare, Ujjwal Gupta, Stanley Chen, Dorit Shapira, Shruthi Venugopal, Suresh Chemudupati, Rupal Parikh, Eric Dehaemer, Pavithra Sampath, Phani Kumar Kandula, Yogesh Bansal, Dean Mulla, Michael Tulanowski, Stephen Haake, Andrew Herdrich, Ripan Das
  • Publication number: 20200210332
    Abstract: Examples include a computing system for receiving memory class of service parameters; setting performance monitoring configuration parameters, based at least in part on the memory class of service parameters, for use by a performance monitor of a memory controller to generate performance monitoring statistics by monitoring performance of one or more workloads by a plurality of processor cores based at least in part on the performance monitoring configuration parameters; receiving the performance monitoring statistics from the performance monitor; and generating, based at least in part on the performance monitoring statistics, a plurality of memory bandwidth settings to be applied by a memory bandwidth allocator to the plurality of processor cores to dynamically adjust priorities of memory bandwidth allocated for the one or more workloads to be processed by the plurality of processor cores.
    Type: Application
    Filed: March 12, 2020
    Publication date: July 2, 2020
    Inventors: Ian M. STEINER, Andrew J. HERDRICH, Wenhui SHU, Ripan DAS, Dianjun SUN, Nikhil GUPTA, Shruthi VENUGOPAL