Patents by Inventor Shu-Cheng Chin

Shu-Cheng Chin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230361040
    Abstract: Selective ruthenium and selective ruthenium oxide may be used in single damascene processes and/or dual damascene processes to form BEOL metallization layers and vias of an electronic device. A selective ruthenium liner may be formed to achieve a low contact resistance and a low sheet resistance for the BEOL metallization layers and vias, to promote adhesion between the various layers and materials in the BEOL metallization layers and vias, and/or to reduce or eliminate defects (such as voids and discontinuities) in the BEOL metallization layers and vias.
    Type: Application
    Filed: July 14, 2023
    Publication date: November 9, 2023
    Inventor: Shu-Cheng CHIN
  • Publication number: 20230361039
    Abstract: A method of manufacturing an interconnect structure includes forming an opening through a dielectric layer. The opening exposes a top surface of a first conductive feature. The method further includes forming a barrier layer on sidewalls of the opening, passivating the exposed top surface of the first conductive feature with a treatment process, forming a liner layer over the barrier layer, and filling the opening with a conductive material.
    Type: Application
    Filed: July 13, 2023
    Publication date: November 9, 2023
    Inventors: Shu-Cheng Chin, Ming-Yuan Gao, Chen-Yi Niu, Yen-Chun Lin, Hsin-Ying Peng, Chih-Hsiang Chang, Pei-Hsuan Lee, Chi-Feng Lin, Chih-Chien Chi, Hung-Wen Su
  • Publication number: 20230299002
    Abstract: Various back end of line (BEOL) layer formation techniques described herein enable reduced contact resistance, reduced surface roughness, and/or increased semiconductor device performance for BEOL layers such as interconnects and/or metallization layers.
    Type: Application
    Filed: March 18, 2022
    Publication date: September 21, 2023
    Inventors: Shu-Cheng CHIN, Chih-Chien CHI, Hsin-Ying PENG, Jau-Jiun HUANG, Ya-Lien LEE, Kuan-Chia CHEN, Chia-Pang KUO, Yao-Min LIU
  • Patent number: 11749604
    Abstract: Selective ruthenium and selective ruthenium oxide may be used in single damascene processes and/or dual damascene processes to form BEOL metallization layers and vias of an electronic device. A selective ruthenium liner may be formed to achieve a low contact resistance and a low sheet resistance for the BEOL metallization layers and vias, to promote adhesion between the various layers and materials in the BEOL metallization layers and vias, and/or to reduce or eliminate defects (such as voids and discontinuities) in the BEOL metallization layers and vias.
    Type: Grant
    Filed: January 29, 2021
    Date of Patent: September 5, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Shu-Cheng Chin
  • Publication number: 20230275019
    Abstract: A semiconductor device includes an insulating layer, wherein the insulating layer has a via opening and a conductive line opening. The semiconductor device further includes a via in the via opening. The semiconductor device further includes a conductive line in the conductive line opening. The conductive line includes a first liner layer, wherein a first thickness of the first liner layer over the via is less than a second thickness of the first liner layer over the insulating layer, and a conductive fill, wherein the first liner layer surrounds the conductive fill.
    Type: Application
    Filed: May 4, 2023
    Publication date: August 31, 2023
    Inventors: Shu-Cheng CHIN, Yao-Min LIU, Hung-Wen SU, Chih-Chien CHI, Chi-Feng LIN
  • Publication number: 20230275024
    Abstract: Barrier-free interconnects and methods of fabrication thereof are disclosed herein. An exemplary interconnect structure has a conductive line disposed over a conductive via. The conductive line has a first conductive plug disposed in a first dielectric layer, and the first conductive plug includes an electrically conductive non-metal material, such as graphite. The conductive via includes a second conductive plug disposed in a second dielectric layer, and the second conductive plug includes a metal material, such as tungsten, ruthenium, molybdenum, or combinations thereof. The first conductive plug physically contacts the second conductive plug and the second dielectric layer. The second conductive plug physically contacts the second dielectric layer. Spacers (which are insulators) may be disposed between sidewalls of the first conductive plug and the first dielectric layer. The spacers may further be disposed between the first dielectric layer and the second dielectric layer.
    Type: Application
    Filed: May 27, 2022
    Publication date: August 31, 2023
    Inventors: Shu-Cheng Chin, Chih-Chien Chi
  • Patent number: 11742290
    Abstract: A method of manufacturing an interconnect structure includes forming an opening through a dielectric layer. The opening exposes a top surface of a first conductive feature. The method further includes forming a barrier layer on sidewalls of the opening, passivating the exposed top surface of the first conductive feature with a treatment process, forming a liner layer over the barrier layer, and filling the opening with a conductive material. The liner layer may include ruthenium.
    Type: Grant
    Filed: April 28, 2021
    Date of Patent: August 29, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Shu-Cheng Chin, Ming-Yuan Gao, Chen-Yi Niu, Yen-Chun Lin, Hsin-Ying Peng, Chih-Hsiang Chang, Pei-Hsuan Lee, Chi-Feng Lin, Chih-Chien Chi, Hung-Wen Su
  • Publication number: 20230223344
    Abstract: An interconnect structure and methods of forming the same are described. In some embodiments, the structure includes a first dielectric layer disposed over one or more devices, a first conductive feature disposed in the first dielectric layer, a second conductive feature disposed in the first dielectric layer, an etch stop layer disposed on the first dielectric layer, a second dielectric layer disposed on the etch stop layer, and a third conductive feature disposed in the second dielectric layer and the etch stop layer. The third conductive feature includes a first conductive layer, which includes a two-dimensional material. The structure further includes a fourth conductive feature disposed in the second dielectric layer and the etch stop layer. The third conductive feature and the fourth conductive feature include different number of layers.
    Type: Application
    Filed: April 16, 2022
    Publication date: July 13, 2023
    Inventor: Shu-Cheng CHIN
  • Publication number: 20230154850
    Abstract: A graphene liner deposited between at least one liner material (e.g., barrier layer, ruthenium liner, and/or cobalt liner) and a copper conductive structure reduces surface scattering at an interface between the at least one liner material and the copper conductive structure. Additionally, or alternatively, the carbon-based liner reduces contact resistance at an interface between the at least one liner material and the copper conductive structure. A carbon-based cap may additionally or alternatively be deposited on a metal cap, over the copper conductive structure, to reduce surface scattering at an interface between the metal cap and an additional copper conductive structure deposited over the metal cap.
    Type: Application
    Filed: January 11, 2022
    Publication date: May 18, 2023
    Inventors: Shu-Cheng CHIN, Chih-Yi CHANG, Chih-Chien CHI, Ming-Hsing TSAI
  • Publication number: 20230154792
    Abstract: A barrier layer is selectively formed on a bottom surface of a recess (e.g., in which a back end of line (BEOL) conductive structure will be formed) using a combination of flash physical vapor deposition with atomic layer deposition. Additionally, a ruthenium liner is selectively deposited on sidewalls of the BEOL conductive structure using a blocking material. Accordingly, the barrier layer prevents diffusion of metal ions from the BEOL conductive structure and is thinner at the bottom surface as compared to the sidewalls in order to reduce contact resistance. Additionally, the ruthenium liner improves copper flow into the BEOL conductive structure and is thinner at the bottom surface in order to further reduce contact resistance.
    Type: Application
    Filed: January 12, 2022
    Publication date: May 18, 2023
    Inventors: Shu-Cheng CHIN, Chih-Chien CHI, Chi-Feng LIN
  • Patent number: 11652044
    Abstract: A semiconductor device includes an insulating layer, wherein the insulating layer has a via opening and a conductive line opening. The semiconductor device further includes a via in the via opening, wherein the via includes a first conductive material. The semiconductor device further includes a conductive line in the conductive line opening. The conductive line includes a first liner layer, wherein a first thickness of the first liner layer over the via is less than a second thickness of the first liner layer over the insulating layer, and a conductive fill comprising a second conductive material different from the first conductive material.
    Type: Grant
    Filed: February 26, 2021
    Date of Patent: May 16, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Shu-Cheng Chin, Yao-Min Liu, Hung-Wen Su, Chih-Chien Chi, Chi-Feng Lin
  • Publication number: 20230068398
    Abstract: In some implementations, one or more semiconductor processing tools may form a via within a substrate of a semiconductor device. The one or more semiconductor processing tools may deposit a ruthenium-based liner within the via. The one or more semiconductor processing tools may deposit, after depositing the ruthenium-based liner, a copper plug within the via.
    Type: Application
    Filed: August 30, 2021
    Publication date: March 2, 2023
    Inventors: Yao-Min LIU, Ming-Yuan GAO, Ming-Chou CHIANG, Shu-Cheng CHIN, Huei-Wen HSIEH, Kai-Shiang KUO, Yen-Chun LIN, Cheng-Hui WENG, Chun-Chieh LIN, Hung-Wen SU
  • Publication number: 20230042277
    Abstract: A semiconductor processing tool performs passivation layer deposition and removal in situ. A transport mechanism included in the semiconductor processing tool transfers a semiconductor structure through different deposition chambers (e.g., without breaking or removing a vacuum environment). Accordingly, the semiconductor processing tool deposits a target layer that is thinner on, or even absent from, a metal layer, such that contact resistance is reduced between a conductive structure formed over the target layer and the metal layer. As a result, electrical performance of a device including the conductive structure is improved. Moreover, because the process is performed in situ (e.g., without breaking or removing the vacuum) in the semiconductor processing tool, production time and risk of impurities in the conductive structure are reduced. As a result, throughput is increased, and chances of spoiled wafers are decreased.
    Type: Application
    Filed: March 7, 2022
    Publication date: February 9, 2023
    Inventors: Chia-Pang KUO, Yao-Min LIU, Shu-Cheng CHIN, Chih-Chien CHI, Cheng-Hui WENG
  • Publication number: 20230029867
    Abstract: A blocking material is selectively deposited on a bottom surface of a back end of line (BEOL) conductive structure such that a barrier layer is selectively deposited on sidewalls of the BEOL conductive structure but not the bottom surface. The blocking material is etched such that copper from a conductive structure underneath is exposed, and a ruthenium layer is deposited on the barrier layer but less ruthenium is deposited on the exposed copper. Accordingly, the barrier layer prevents diffusion of metal ions from the BEOL conductive structure and is substantially absent from the bottom surface as compared to the sidewalls in order to reduce contact resistance. Additionally, the ruthenium layer reduces surface roughness within the BEOL conductive structure and is thinner at the bottom surface as compared to the sidewalls in order to reduce contact resistance.
    Type: Application
    Filed: February 25, 2022
    Publication date: February 2, 2023
    Inventors: Shu-Cheng CHIN, Ming-Yuan GAO, Chun-Kai CHANG, Chen-Yi NIU, Hsin-Ying PENG, Chi-Feng LIN, Hung-Wen SU
  • Publication number: 20220384338
    Abstract: A method of making a semiconductor device includes etching an insulating layer to form a first opening and a second opening. The method further includes depositing a conductive material in the first opening. The method further includes performing a surface modification process on the conductive material. The method further includes depositing, after the surface modification process, a first liner layer in the second opening, wherein the first liner layer extends over the conductive material and the insulating layer. The method further includes depositing a conductive fill over the first liner layer, wherein the conductive fill includes a different material from the conductive material.
    Type: Application
    Filed: August 10, 2022
    Publication date: December 1, 2022
    Inventors: Shu-Cheng CHIN, Yao-Min LIU, Hung-Wen SU, Chih-Chien CHI, Chi-Feng LIN
  • Publication number: 20220367266
    Abstract: A method includes forming a first conductive feature, depositing a graphite layer over the first conductive feature, patterning the graphite layer to form a graphite conductive feature, depositing a dielectric spacer layer on the graphite layer, depositing a first dielectric layer over the dielectric spacer layer, planarizing the first dielectric layer, forming a second dielectric layer over the first dielectric layer, and forming a second conductive feature in the second dielectric layer. The second conductive feature is over and electrically connected to the graphite conductive feature.
    Type: Application
    Filed: July 21, 2021
    Publication date: November 17, 2022
    Inventors: Shu-Cheng Chin, Chih-Yi Chang, Wei Hsiang Chan, Chih-Chien Chi, Chi-Feng Lin, Hung-Wen Su
  • Publication number: 20220293528
    Abstract: A method of manufacturing an interconnect structure includes forming an opening through a dielectric layer. The opening exposes a top surface of a first conductive feature. The method further includes forming a barrier layer on sidewalls of the opening, passivating the exposed top surface of the first conductive feature with a treatment process, forming a liner layer over the barrier layer, and filling the opening with a conductive material. The liner layer may include ruthenium.
    Type: Application
    Filed: April 28, 2021
    Publication date: September 15, 2022
    Inventors: Shu-Cheng Chin, Ming-Yuan Gao, Chen-Yi Niu, Yen-Chun Lin, Hsin-Ying Peng, Chih-Hsiang Chang, Pei-Hsuan Lee, Chi-Feng Lin, Chih-Chien Chi, Hung-Wen Su
  • Publication number: 20220278040
    Abstract: A semiconductor device includes an insulating layer, wherein the insulating layer has a via opening and a conductive line opening. The semiconductor device further includes a via in the via opening, wherein the via includes a first conductive material. The semiconductor device further includes a conductive line in the conductive line opening. The conductive line includes a first liner layer, wherein a first thickness of the first liner layer over the via is less than a second thickness of the first liner layer over the insulating layer, and a conductive fill comprising a second conductive material different from the first conductive material.
    Type: Application
    Filed: February 26, 2021
    Publication date: September 1, 2022
    Inventors: Shu-Cheng CHIN, Yao-Min LIU, Hung-Wen SU, Chih-Chien CHI, Chi-Feng LIN
  • Publication number: 20220246535
    Abstract: Selective ruthenium and selective ruthenium oxide may be used in single damascene processes and/or dual damascene processes to form BEOL metallization layers and vias of an electronic device. A selective ruthenium liner may be formed to achieve a low contact resistance and a low sheet resistance for the BEOL metallization layers and vias, to promote adhesion between the various layers and materials in the BEOL metallization layers and vias, and/or to reduce or eliminate defects (such as voids and discontinuities) in the BEOL metallization layers and vias.
    Type: Application
    Filed: January 29, 2021
    Publication date: August 4, 2022
    Inventor: Shu-Cheng CHIN
  • Publication number: 20220246534
    Abstract: Implementations of low-resistance copper interconnects and manufacturing techniques for forming the low-resistance copper interconnects described herein may achieve low contact resistance and low sheet resistance by decreasing tantalum nitride (TaN) liner/film thickness (or eliminating the use of tantalum nitride as a copper diffusion barrier) and using ruthenium (Ru) and/or zinc silicon oxide (ZnSiOx) as a copper diffusion barrier, among other examples. The low contact resistance and low sheet resistance of the copper interconnects described herein may increase the electrical performance of an electronic device including such copper interconnects by decreasing the resistance/capacitance (RC) time constants of the electronic device and increasing signal propagation speeds across the electronic device, among other examples.
    Type: Application
    Filed: January 29, 2021
    Publication date: August 4, 2022
    Inventors: Shu-Cheng CHIN, Chih-Chien CHI, Chi-Feng LIN