Patents by Inventor Shu-Ling Yeh

Shu-Ling Yeh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11978722
    Abstract: A package structure and a formation method of a package structure are provided. The method includes disposing a chip structure over a substrate. The chip structure has an inclined sidewall, the inclined sidewall is at an acute angle to a vertical, the vertical is a direction perpendicular to a main surface of the chip structure, and the acute angle is in a range from about 12 degrees to about 45 degrees. The method also includes forming a protective layer to surround the chip structure.
    Type: Grant
    Filed: August 27, 2021
    Date of Patent: May 7, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Shu-Shen Yeh, Po-Chen Lai, Che-Chia Yang, Li-Ling Liao, Po-Yao Lin, Shin-Puu Jeng
  • Publication number: 20230348684
    Abstract: The present disclosure provides a hydrophilic poly(meth)acrylate copolymer film for biological test strip, a preparation method thereof and a biological test strip containing the hydrophilic poly(meth)acrylate copolymer film. The hydrophilic poly(meth)acrylate copolymer film includes a substrate and a poly(meth)acrylate copolymer formed on at least one surface of the substrate. The poly(meth)acrylate copolymer is derived from a formulation including an acrylate-functioned oligomer and a (meth)acrylic acid or (meth)acrylate monomer; and an initiator.
    Type: Application
    Filed: April 20, 2023
    Publication date: November 2, 2023
    Applicants: COVESTRO (TAIWAN) LTD., INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: JUI-MING CHANG, CHE-HSIU SHIH, SHU-LING YEH, Yen-Chen LIN
  • Patent number: 8487044
    Abstract: The invention provides a oriented white polyester film, which includes at least one polyester film with a cavitation additive, wherein the cavitation additive includes poly(methyl methacrylate-co-methyl methacrylamide), a copolymer of sulfophthalate salt and nylon, polyarylate (PAR), ethylene methacrylate (EMA), ethylene methacrylate acrylic acid terpolymer (EMAAA), polyetherimide (PEI), metallocene catalyzed cyclic olefin copolymer (mCOC) or combinations thereof.
    Type: Grant
    Filed: November 24, 2010
    Date of Patent: July 16, 2013
    Assignee: Industrial Technology Research Institute
    Inventors: Ming-Cheng Feng, Dan-Cheng Kong, Chang-Ming Wong, Shu-Ling Yeh
  • Patent number: 8475696
    Abstract: A method for packaging a light emitting diode is provided. The steps comprise: providing a material; drying the material; feeding the material into a feeding inlet; and providing a mold with pre-embedded light diodes. The material enters the feeding inlet and is injected into the mold by pressing a screw, allowing the material to combine with the light emitting diode.
    Type: Grant
    Filed: March 17, 2008
    Date of Patent: July 2, 2013
    Assignee: Industrial Technology Research Institute
    Inventors: Chih-hsiang Lin, Ya-Lan Chuang, Pei-Jung Tsat, Shu-Ling Yeh, Chin-Lang Wu, Cing-Jiuh Kang, Hsin-Ching Kao
  • Patent number: 8465764
    Abstract: A method for preparing a pharmaceutical compound by way of magnetic carbon nanocapsules is disclosed. The method comprises steps of: (a) providing a magnetic carbon nanocapsule with C—(COOH)2 group, and Pt cations, to form a complex; (b) collecting the complex from the magnetic carbon nanocapsule; and (c) removing the Pt cations on the complex.
    Type: Grant
    Filed: March 6, 2006
    Date of Patent: June 18, 2013
    Assignees: Phytohealth Corporation, Industrial Technology Research Institute
    Inventors: Gan-Lin Hwang, Tsung-Shann Jiang, Shu-Ling Yeh, Hsien-Ming Wu, Shu-Hao Lee, Shih-Jung Tsai
  • Patent number: 8389666
    Abstract: The disclosed is a copolymer having a formula as: R1 is a combination of naphthalene, phenylene, butyl, and hexyl. R2 is a combination of ethylene, cyclohexlene, 2-methylpropyl, and neopentyl. n is a number of 1500 to 3000. The copolymer has a transparency greater than 80%, a thermal resistance greater than 100° C., a moisture absorption less than 0.5 wt %, and yellowing under UV/climate resistance greater than 1000 hours.
    Type: Grant
    Filed: January 3, 2011
    Date of Patent: March 5, 2013
    Assignee: Industrial Technology Research Institute
    Inventors: Chih-Hsiang Lin, Ya-Lan Chuang, Pei-Jung Tsat, Shu-Ling Yeh, Chin-Lang Wu, Cing-Jiuh Kang, Hsin-Ching Kao
  • Publication number: 20110123789
    Abstract: The invention provides a oriented white polyester film, which includes at least one polyester film with a cavitation additive, wherein the cavitation additive includes poly(methyl methacrylate-co-methyl methacrylamide), a copolymer of sulfophthalate salt and nylon, polyarylate (PAR), ethylene methacrylate (EMA), ethylene methacrylate acrylic acid terpolymer (EMAAA), polyetherimide (PEI), metallocene catalyzed cyclic olefin copolymer (mCOC) or combinations thereof.
    Type: Application
    Filed: November 24, 2010
    Publication date: May 26, 2011
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Ming-Cheng Feng, Dan-Cheng Kong, Chang-Ming Wong, Shu-Ling Yeh
  • Publication number: 20110098437
    Abstract: The disclosed is a copolymer having a formula as: R1 is a combination of naphthalene, phenylene, butyl, and hexyl. R2 is a combination of ethylene, cyclohexlene, 2-methylpropyl, and neopentyl. n is a number of 1500 to 3000. The copolymer has a transparency greater than 80%, a thermal resistance greater than 100, a moisture absorption less than 0.5 wt %, and yellowing under UV/climate resistance greater than 1000 hours, such that the copolymer is adapted to be applied in packaging material for light emitting devices.
    Type: Application
    Filed: January 3, 2011
    Publication date: April 28, 2011
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Chih-Hsiang Lin, Ya-Lan Chuang, Pei-Jung Tsat, Shu-Ling Yeh, Chin-Lang Wu, Cing-Jiuh Kang, Hsin-Ching Kao
  • Patent number: 7871835
    Abstract: Disclosed is a method for packaging an LED by a thermoplastic copolymer. The copolymer is polymerized by 100 parts by weight of an acrylic ester, 0.1 to 30 parts by weight of a hydrogen bond monomer, and 0.1 to 70 parts by weight of a bulky monomer. The copolymer has transparency greater than 90%, thermal resistance greater than 130° C., and moisture absorption less than 0.5 wt %, such that the copolymer may be applied as packaging material for a light emitting device.
    Type: Grant
    Filed: April 3, 2009
    Date of Patent: January 18, 2011
    Assignees: Industrial Technology Research Institute, Topco Technologies Corp.
    Inventors: Shu-Ling Yeh, Ya-Lan Chuang, Pei-Jung Tsai, Chih-Hsiang Lin, Hsin-Ching Kao, Feng-Chih Chang, Tang-Jung Wu
  • Patent number: 7868049
    Abstract: The invention provides an organic/inorganic hybrid material and the method for manufacturing the same. A variety of functional monomers are co-polymerized to form a copolymer. The copolymer is subjected to sol-gel reactions with metal alkoxide oligomers to form an organic/inorganic hybrid material. The hybrid material has a high refractive index, a low moisture absorption, a high light transmission ratio, and a high glass transition point, such that the material can be applied in high light extraction efficient LED sealing materials, thin and light myopia/hypropia lens, portable projector lens, high brightness LCD prism films, solar cell refractive photoelectric conversion mirrors, and camera phone/digital camera lens.
    Type: Grant
    Filed: June 29, 2007
    Date of Patent: January 11, 2011
    Assignee: Industrial Technology Research Institute
    Inventors: Wei-Han Liao, Chih-Hsiang Lin, Hsin-Ching Kao, Hsun-Yu Li, Shu-Ling Yeh
  • Publication number: 20100047936
    Abstract: Disclosed is a method for packaging an LED by a thermoplastic copolymer. The copolymer is polymerized by 100 parts by weight of an acrylic ester, 0.1 to 30 parts by weight of a hydrogen bond monomer, and 0.1 to 70 parts by weight of a bulky monomer. The copolymer has transparency greater than 90%, thermal resistance greater than 130° C., and moisture absorption less than 0.5 wt %, such that the copolymer may be applied as packaging material for a light emitting device.
    Type: Application
    Filed: April 3, 2009
    Publication date: February 25, 2010
    Applicants: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE, Topco Technologies Corp.
    Inventors: Shu-Ling YEH, Ya-Lan CHUANG, Pei-Jung TSAI, Chih-Hsiang LIN, Hsin-Ching KAO, Feng-Chih CHANG, Tang-Jung WU
  • Publication number: 20090111966
    Abstract: The disclosed is a copolymer having a formula as: R1 is a combination of naphthalene, phenylene, butyl, and hexyl. R2 is a combination of ethylene, cyclohexene, 2-methylpropyl, and neopentyl. n is a number of 1500 to 3000. The copolymer has a transparency greater than 80%, a thermal resistance greater than 100° C., a moisture absorption less than 0.5 wt %, and yellowing under UV/climate resistance greater than 1000 hours, such that the copolymer is adapted to be applied in packaging material for light emitting devices.
    Type: Application
    Filed: March 17, 2008
    Publication date: April 30, 2009
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Chih-hsiang Lin, Ya-Lan Chuang, Pei-Jung Tsat, Shu-Ling Yeh, Chin-Lang Wu, Cing-Jiuh Kang, Hsin-Ching Kao
  • Publication number: 20090111951
    Abstract: The disclosed is a blend including 20 to 80 parts by weight of polycarbonate, 20 to 80 parts by weight of polyarylate, and 20 to 80 parts by weight of copolymer having a formula as below: wherein R1 is a combination of at least two of ethylene, cyclohexlene dimethylene, 2-methyl propyl, and neopentyl. R2 is a combination of at least two of naphthalene, phenylene, butyl, and hexyl. n is a number of 1500 to 3000. The blend has high transparency, high thermal resistance, and high yellowing resistance under UV/climate, such that the blend is suitable to be applied in packaging material for light emitting device.
    Type: Application
    Filed: March 17, 2008
    Publication date: April 30, 2009
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Chih-hsiang Lin, Ya-Lan Chuang, Pei-Jung Tsat, Shu-Ling Yeh, Chin-Lang Wu, Cing-Jiuh Kang, Hsin-Ching Kao
  • Publication number: 20090108496
    Abstract: A method for packaging a light emitting diode is provided. The steps comprise: providing a material; drying the material; feeding the material into a feeding inlet; and providing a mold with pre-embedded light diodes. The material enters the feeding inlet and is injected into the mold by pressing a screw, allowing the material to combine with the light emitting diode.
    Type: Application
    Filed: March 17, 2008
    Publication date: April 30, 2009
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Chih-hsiang Lin, Ya-Lan Chuang, Pei-Jung Tsat, Shu-Ling Yeh, Chin-Lang Wu, Cing-Jiuh Kang, Hsin-Ching Kao
  • Publication number: 20090005513
    Abstract: The invention provides an organic/inorganic hybrid material and the method for manufacturing the same. A variety of functional monomers are co-polymerized to form a copolymer. The copolymer is subjected to sol-gel reactions with metal alkoxide oligomers to form an organic/inorganic hybrid material. The hybrid material has a high refractive index, a low moisture absorption, a high light transmission ratio, and a high glass transition point, such that the material can be applied in high light extraction efficient LED sealing materials, thin and light myopia/hypropia lens, portable projector lens, high brightness LCD prism films, solar cell refractive photoelectric conversion mirrors, and camera phone/digital camera lens.
    Type: Application
    Filed: June 29, 2007
    Publication date: January 1, 2009
    Applicant: Industrial Technology Institute
    Inventors: Wei-Han Liao, Chih-Hsiang Lin, Hsin-Ching Kao, Hsun-Yu Li, Shu-Ling Yeh
  • Publication number: 20080105276
    Abstract: A method of improving surface flame resistance of a substrate is provided. A substrate is provided. An atmosphere pressure plasma process is performed on the surface of the substrate to form an inorganic film layer on the surface of the substrate, wherein a process gas of the atmosphere plasma process includes a flame resistance precursor, a carrier gas, and a plasma ignition gas. Particularly, the flame resistance precursor is selected from a siloxane compound, an inorganic alkoxide compound and a combination thereof. The siloxane compound has a formula of Si(OCnH2(n+1))4, n=1˜5, and the inorganic alkoxide compound has a formula of A(OCmH2m+1)4, where A represents Sn, Ti, Zr, Ce and m=2.
    Type: Application
    Filed: December 29, 2006
    Publication date: May 8, 2008
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Shu-Ling Yeh, Chin-jiuh Kang
  • Publication number: 20070098780
    Abstract: A method for preparing a pharmaceutical compound by way of magnetic carbon nanocapsules is disclosed. The method comprises steps of: (a) providing a magnetic carbon nanocapsule with C—(COOH)2 group, and Pt cations, to form a complex; (b) collecting the complex from the magnetic carbon nanocapsule; and (c) removing the Pt cations on the complex.
    Type: Application
    Filed: March 6, 2006
    Publication date: May 3, 2007
    Applicants: PhytoHealth Corporation, Industrial Technology Research Institute
    Inventors: Gan-Lin Hwang, Tsung-Shann Jiang, Shu-Ling Yeh, Hsien-Ming Wu, Shu-Hao Lee, Shih-Jung Tsai