Patents by Inventor Shumin Fang

Shumin Fang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10899613
    Abstract: A hydrogen permeation membrane is provided that can include a carbon-based material (C) and a ceramic material (BZCYT) mixed together. The carbon-based material can include graphene, graphite, carbon nanotubes, or a combination thereof. The ceramic material can have the formula BaZr1-x-y-zCexYyTzO3-?, where 0?x?0.5, 0?y?0.5, 0?z?0.5, (x+y+z)>0; 0???0.5, and T is Yb, Sc, Ti, Nb, Ta, Mo, Mn, Fe, Co, Ni, Cu, Zn, Ga, In, or a combination thereof. In addition, the BZYCT can be present in the C-BZCYT mixture in an amount ranging from about 40% by volume to about 80% by volume. Further, a method of forming such a membrane is also provided. A method is also provided for extracting hydrogen from a feed stream.
    Type: Grant
    Filed: October 12, 2018
    Date of Patent: January 26, 2021
    Assignees: University of South Carolina, Clemson University Research Foundation
    Inventors: Fanglin Chen, Shumin Fang, Kyle Brinkman, Siwei Wang, Jian He, Yufei Liu
  • Patent number: 10662383
    Abstract: A method for generating hydrocarbons using a solid oxide electrolysis cell (SOEC) and a Fischer-Tropsch unit in a single microtubular reactor is described. This method can directly synthesize hydrocarbons from carbon dioxide and water. The method integrates high temperature co-electrolysis of H2O and CO2 and low temperature Fischer-Tropsch (F-T) process in a single microtubular reactor by designation of a temperature gradient along the axial length of the microtubular reactor. In practice, methods disclosed herein can provide direct conversion of CO2 to hydrocarbons for use as feedstock or energy storage.
    Type: Grant
    Filed: May 17, 2019
    Date of Patent: May 26, 2020
    Assignee: University of South Carolina
    Inventors: Fanglin Chen, Libin Lei, Tong Liu, Shumin Fang
  • Publication number: 20190270938
    Abstract: A method for generating hydrocarbons using a solid oxide electrolysis cell (SOEC) and a Fischer-Tropsch unit in a single microtubular reactor is described. This method can directly synthesize hydrocarbons from carbon dioxide and water. The method integrates high temperature co-electrolysis of H2O and CO2 and low temperature Fischer-Tropsch (F-T) process in a single microtubular reactor by designation of a temperature gradient along the axial length of the microtubular reactor. In practice, methods disclosed herein can provide direct conversion of CO2 to hydrocarbons for use as feedstock or energy storage.
    Type: Application
    Filed: May 17, 2019
    Publication date: September 5, 2019
    Inventors: FANGLIN CHEN, LIBIN LEI, TONG LIU, SHUMIN FANG
  • Patent number: 10336944
    Abstract: A hydrocarbon generation system that combines a solid oxide electrolysis cell (SOEC) and a Fischer-Tropsch unit in a single microtubular reactor is described. This system can directly synthesize hydrocarbons from carbon dioxide and water. High temperature co-electrolysis of H2O and CO2 and low temperature Fischer-Tropsch (F-T) process are integrated in a single microtubular reactor by designation of a temperature gradient along the axial length of the microtubular reactor. The microtubular reactor can provide direct conversion of CO2 to hydrocarbons for use as feedstock or energy storage.
    Type: Grant
    Filed: September 21, 2017
    Date of Patent: July 2, 2019
    Assignee: University of South Carolina
    Inventors: Fanglin Chen, Libin Lei, Tong Liu, Shumin Fang
  • Publication number: 20190119110
    Abstract: A hydrogen permeation membrane is provided that can include a carbon-based material (C) and a ceramic material (BZCYT) mixed together. The carbon-based material can include graphene, graphite, carbon nanotubes, or a combination thereof. The ceramic material can have the formula BaZr1-x-y-zCexYyTzO3-?, where 0?x?0.5, 0?y?0.5, 0?z?0.5, (x+y+z)>0; 0???0.5, and T is Yb, Sc, Ti, Nb, Ta, Mo, Mn, Fe, Co, Ni, Cu, Zn, Ga, In, or a combination thereof. In addition, the BZYCT can be present in the C-BZCYT mixture in an amount ranging from about 40% by volume to about 80% by volume. Further, a method of forming such a membrane is also provided. A method is also provided for extracting hydrogen from a feed stream.
    Type: Application
    Filed: October 12, 2018
    Publication date: April 25, 2019
    Inventors: Fanglin Chen, Shumin Fang, Kyle Brinkman, Siwei Wang, Jian He, Yufei Liu
  • Publication number: 20180086984
    Abstract: A hydrocarbon generation system that combines a solid oxide electrolysis cell (SOEC) and a Fischer-Tropsch unit in a single microtubular reactor is described. This system can directly synthesize hydrocarbons from carbon dioxide and water. High temperature co-electrolysis of H2O and CO2 and low temperature Fischer-Tropsch (F-T) process are integrated in a single microtubular reactor by designation of a temperature gradient along the axial length of the microtubular reactor. The microtubular reactor can provide direct conversion of CO2 to hydrocarbons for use as feedstock or energy storage.
    Type: Application
    Filed: September 21, 2017
    Publication date: March 29, 2018
    Inventors: Fanglin Chen, Libin Lei, Tong Liu, Shumin Fang
  • Patent number: 9687775
    Abstract: A hydrogen permeation membrane is provided that can include a metal and a ceramic material mixed together. The metal can be Ni, Zr, Nb, Ta, Y, Pd, Fe, Cr, Co, V, or combinations thereof, and the ceramic material can have the formula: BaZr1-x-yYxTyO3-? where 0?x?0.5, 0?y?0.5, (x+y)>0; 0???0.5, and T is Sc, Ti, Nb, Ta, Mo, Mn, Fe, Co, Ni, Cu, Zn, Ga, In, Sn, or combinations thereof. A method of forming such a membrane is also provided. A method is also provided for extracting hydrogen from a feed stream.
    Type: Grant
    Filed: April 3, 2015
    Date of Patent: June 27, 2017
    Assignees: University of South Carolina, Clemson University Research Foundation
    Inventors: Fanglin Chen, Shumin Fang, Kyle S. Brinkman
  • Publication number: 20150314232
    Abstract: A hydrogen permeation membrane is provided that can include a metal and a ceramic material mixed together. The metal can be Ni, Zr, Nb, Ta, Y, Pd, Fe, Cr, Co, V, or combinations thereof, and the ceramic material can have the formula: BaZr1-x-yYxTyO3-? where 0?x?0.5, 0?y?0.5, (x+y)>0; 0???0.5, and T is Sc, Ti, Nb, Ta, Mo, Mn, Fe, Co, Ni, Cu, Zn, Ga, In, Sn, or combinations thereof. A method of forming such a membrane is also provided. A method is also provided for extracting hydrogen from a feed stream.
    Type: Application
    Filed: April 3, 2015
    Publication date: November 5, 2015
    Inventors: Fanglin Chen, Shumin Fang, Kyle S. Brinkman