Patents by Inventor Shu Qin

Shu Qin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230187254
    Abstract: Various embodiments of microelectronic devices and methods of manufacturing are described herein. In one embodiment, a method for enhancing wafer bonding includes positioning a substrate assembly on a unipolar electrostatic chuck in direct contact with an electrode, electrically coupling a conductor to a second substrate positioned on top of the first substrate, and applying a voltage to the electrode, thereby creating a potential differential between the first substrate and the second substrate that generates an electrostatic force between the first and second substrates.
    Type: Application
    Filed: February 6, 2023
    Publication date: June 15, 2023
    Inventors: Shu Qin, Ming Zhang
  • Patent number: 11658033
    Abstract: Some embodiments include an integrated assembly having a first semiconductor structure containing heavily-doped silicon, a germanium-containing interface material over the first semiconductor structure, and a second semiconductor structure over the germanium-containing interface material. The second semiconductor structure has a heavily-doped lower region adjacent the germanium-containing interface material and has a lightly-doped upper region above the heavily-doped lower region. The lightly-doped upper region and heavily-doped lower region are majority doped to a same dopant type, and join to one another along a boundary region. Some embodiments include an integrated assembly having germanium oxide between a first silicon-containing structure and a second silicon-containing structure. Some embodiments include methods of forming assemblies.
    Type: Grant
    Filed: November 17, 2020
    Date of Patent: May 23, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Yushi Hu, Shu Qin
  • Publication number: 20230044518
    Abstract: In a variety of processes for forming electronic devices that use spin-on dielectric materials, properties of the spin-on dielectric materials can be enhanced by curing these materials using plasma doping. For example, hardness and Young's modulus can be increased for the cured material. Other properties may be enhanced. The plasma doping to cure the spin-on dielectric materials uses a mechanism that is a combination of plasma ion implant and high energy radiation associated with the species ionized. In addition, physical properties of the spin-on dielectric materials can be modified along a length of the spin-on dielectric materials by selection of an implant energy and dopant dose for the particular dopant used, corresponding to a selection variation with respect to length.
    Type: Application
    Filed: October 21, 2022
    Publication date: February 9, 2023
    Inventors: Santanu Sarkar, Jay Steven Brown, Shu Qin, Yongjun Jeff Hu, Farrell Martin Good
  • Patent number: 11574834
    Abstract: Various embodiments of microelectronic devices and methods of manufacturing are described herein. In one embodiment, a method for enhancing wafer bonding includes positioning a substrate assembly on a unipolar electrostatic chuck in direct contact with an electrode, electrically coupling a conductor to a second substrate positioned on top of the first substrate, and applying a voltage to the electrode, thereby creating a potential differential between the first substrate and the second substrate that generates an electrostatic force between the first and second substrates.
    Type: Grant
    Filed: August 5, 2021
    Date of Patent: February 7, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Shu Qin, Ming Zhang
  • Patent number: 11508573
    Abstract: In a variety of processes for forming electronic devices that use spin-on dielectric materials, properties of the spin-on dielectric materials can be enhanced by curing these materials using plasma doping. For example, hardness and Young's modulus can be increased for the cured material. Other properties may be enhanced. The plasma doping to cure the spin-on dielectric materials uses a mechanism that is a combination of plasma ion implant and high energy radiation associated with the species ionized. In addition, physical properties of the spin-on dielectric materials can be modified along a length of the spin-on dielectric materials by selection of an implant energy and dopant dose for the particular dopant used, corresponding to a selection variation with respect to length.
    Type: Grant
    Filed: May 13, 2020
    Date of Patent: November 22, 2022
    Assignee: Micron Technology, Inc.
    Inventors: Santanu Sarkar, Jay Steven Brown, Shu Qin, Yongjun Jeff Hu, Farrell Martin Good
  • Publication number: 20210366758
    Abstract: Various embodiments of microelectronic devices and methods of manufacturing are described herein. In one embodiment, a method for enhancing wafer bonding includes positioning a substrate assembly on a unipolar electrostatic chuck in direct contact with an electrode, electrically coupling a conductor to a second substrate positioned on top of the first substrate, and applying a voltage to the electrode, thereby creating a potential differential between the first substrate and the second substrate that generates an electrostatic force between the first and second substrates.
    Type: Application
    Filed: August 5, 2021
    Publication date: November 25, 2021
    Inventors: Shu Qin, Ming Zhang
  • Patent number: 11114328
    Abstract: Various embodiments of microelectronic devices and methods of manufacturing are described herein. In one embodiment, a method for enhancing wafer bonding includes positioning a substrate assembly on a unipolar electrostatic chuck in direct contact with an electrode, electrically coupling a conductor to a second substrate positioned on top of the first substrate, and applying a voltage to the electrode, thereby creating a potential differential between the first substrate and the second substrate that generates an electrostatic force between the first and second substrates.
    Type: Grant
    Filed: November 30, 2018
    Date of Patent: September 7, 2021
    Assignee: Micron Technology, Inc.
    Inventors: Shu Qin, Ming Zhang
  • Publication number: 20210202243
    Abstract: In a variety of processes for forming electronic devices that use spin-on dielectric materials, properties of the spin-on dielectric materials can be enhanced by curing these materials using plasma doping. For example, hardness and Young's modulus can be increased for the cured material. Other properties may be enhanced. The plasma doping to cure the spin-on dielectric materials uses a mechanism that is a combination of plasma ion implant and high energy radiation associated with the species ionized. In addition, physical properties of the spin-on dielectric materials can be modified along a length of the spin-on dielectric materials by selection of an implant energy and dopant dose for the particular dopant used, corresponding to a selection variation with respect to length.
    Type: Application
    Filed: May 13, 2020
    Publication date: July 1, 2021
    Applicant: Micron Technology, Inc.
    Inventors: Santanu Sarkar, Jay Steven Brown, Shu Qin, Yongjun Jeff Hu, Farrell Martin Good
  • Publication number: 20210082703
    Abstract: Some embodiments include an integrated assembly having a first semiconductor structure containing heavily-doped silicon, a germanium-containing interface material over the first semiconductor structure, and a second semiconductor structure over the germanium-containing interface material. The second semiconductor structure has a heavily-doped lower region adjacent the germanium-containing interface material and has a lightly-doped upper region above the heavily-doped lower region. The lightly-doped upper region and heavily-doped lower region are majority doped to a same dopant type, and join to one another along a boundary region. Some embodiments include an integrated assembly having germanium oxide between a first silicon-containing structure and a second silicon-containing structure. Some embodiments include methods of forming assemblies.
    Type: Application
    Filed: November 17, 2020
    Publication date: March 18, 2021
    Applicant: Micron Technology, Inc.
    Inventors: Yushi Hu, Shu Qin
  • Patent number: 10879071
    Abstract: Some embodiments include an integrated assembly having a first semiconductor structure containing heavily-doped silicon, a germanium-containing interface material over the first semiconductor structure, and a second semiconductor structure over the germanium-containing interface material. The second semiconductor structure has a heavily-doped lower region adjacent the germanium-containing interface material and has a lightly-doped upper region above the heavily-doped lower region. The lightly-doped upper region and heavily-doped lower region are majority doped to a same dopant type, and join to one another along a boundary region. Some embodiments include an integrated assembly having germanium oxide between a first silicon-containing structure and a second silicon-containing structure. Some embodiments include methods of forming assemblies.
    Type: Grant
    Filed: March 4, 2019
    Date of Patent: December 29, 2020
    Assignee: Micron Technology, Inc.
    Inventors: Yushi Hu, Shu Qin
  • Patent number: 10720574
    Abstract: Memory devices and methods for fabricating memory devices have been disclosed. One such method includes forming the memory stack out of a plurality of elements. An adhesion species is formed on at least one sidewall of the memory stack wherein the adhesion species has a gradient structure that results in the adhesion species intermixing with an element of the memory stack to terminate unsatisfied atomic bonds of the element. The gradient structure further comprises a film of the adhesion species on an outer surface of the at least one sidewall. A dielectric material is implanted into the film of the adhesion species to form a sidewall liner.
    Type: Grant
    Filed: February 4, 2019
    Date of Patent: July 21, 2020
    Assignee: Micron Technology, Inc.
    Inventors: Tsz W. Chan, Yongjun Jeff Hu, Swapnil Lengade, Shu Qin, Everett Allen McTeer
  • Patent number: 10546895
    Abstract: Memory devices and methods for fabricating memory devices have been disclosed. One such memory device includes a first electrode material formed on a word line material. A selector device material is formed on the first electrode material. A second electrode material is formed on the selector device material. A phase change material is formed on the second electrode material. A third electrode material is formed on the phase change material. An adhesion species is plasma doped into sidewalls of the memory stack and a liner material is formed on the sidewalls of the memory stack. The adhesion species intermixes with an element of the memory stack and the sidewall liner to terminate unsatisfied atomic bonds of the element and the sidewall liner.
    Type: Grant
    Filed: January 7, 2019
    Date of Patent: January 28, 2020
    Assignee: Micron Technology, Inc.
    Inventors: Yongjun Jeff Hu, Tsz W. Chan, Swapnil Lengade, Everett Allen McTeer, Shu Qin
  • Publication number: 20190355902
    Abstract: Memory devices and methods for fabricating memory devices have been disclosed. One such method includes forming the memory stack out of a plurality of elements. An adhesion species is formed on at least one sidewall of the memory stack wherein the adhesion species has a gradient structure that results in the adhesion species intermixing with an element of the memory stack to terminate unsatisfied atomic bonds of the element. The gradient structure further comprises a film of the adhesion species on an outer surface of the at least one sidewall. A dielectric material is implanted into the film of the adhesion species to form a sidewall liner.
    Type: Application
    Filed: February 4, 2019
    Publication date: November 21, 2019
    Inventors: Tsz W. Chan, Yongjun Jeff Hu, Swapnil Lengade, Shu Qin, Everett Allen McTeer
  • Publication number: 20190198324
    Abstract: Some embodiments include an integrated assembly having a first semiconductor structure containing heavily-doped silicon, a germanium-containing interface material over the first semiconductor structure, and a second semiconductor structure over the germanium-containing interface material. The second semiconductor structure has a heavily-doped lower region adjacent the germanium-containing interface material and has a lightly-doped upper region above the heavily-doped lower region. The lightly-doped upper region and heavily-doped lower region are majority doped to a same dopant type, and join to one another along a boundary region. Some embodiments include an integrated assembly having germanium oxide between a first silicon-containing structure and a second silicon-containing structure. Some embodiments include methods of forming assemblies.
    Type: Application
    Filed: March 4, 2019
    Publication date: June 27, 2019
    Applicant: Micron Technology, Inc.
    Inventors: Yushi Hu, Shu Qin
  • Publication number: 20190140023
    Abstract: Memory devices and methods for fabricating memory devices have been disclosed. One such memory device includes a first electrode material formed on a word line material. A selector device material is formed on the first electrode material. A second electrode material is formed on the selector device material. A phase change material is formed on the second electrode material. A third electrode material is formed on the phase change material. An adhesion species is plasma doped into sidewalls of the memory stack and a liner material is formed on the sidewalls of the memory stack. The adhesion species intermixes with an element of the memory stack and the sidewall liner to terminate unsatisfied atomic bonds of the element and the sidewall liner.
    Type: Application
    Filed: January 7, 2019
    Publication date: May 9, 2019
    Inventors: Yongjun Jeff Hu, Tsz W. Chan, Swapnil Lengade, Everett Allen McTeer, Shu Qin
  • Patent number: 10256098
    Abstract: Some embodiments include an integrated assembly having a first semiconductor structure containing heavily-doped silicon, a germanium-containing interface material over the first semiconductor structure, and a second semiconductor structure over the germanium-containing interface material. The second semiconductor structure has a heavily-doped lower region adjacent the germanium-containing interface material and has a lightly-doped upper region above the heavily-doped lower region. The lightly-doped upper region and heavily-doped lower region are majority doped to a same dopant type, and join to one another along a boundary region. Some embodiments include an integrated assembly having germanium oxide between a first silicon-containing structure and a second silicon-containing structure. Some embodiments include methods of forming assemblies.
    Type: Grant
    Filed: October 29, 2015
    Date of Patent: April 9, 2019
    Assignee: Micron Technology, Inc.
    Inventors: Yushi Hu, Shu Qin
  • Publication number: 20190096732
    Abstract: Various embodiments of microelectronic devices and methods of manufacturing are described herein. In one embodiment, a method for enhancing wafer bonding includes positioning a substrate assembly on a unipolar electrostatic chuck in direct contact with an electrode, electrically coupling a conductor to a second substrate positioned on top of the first substrate, and applying a voltage to the electrode, thereby creating a potential differential between the first substrate and the second substrate that generates an electrostatic force between the first and second substrates.
    Type: Application
    Filed: November 30, 2018
    Publication date: March 28, 2019
    Inventors: Shu Qin, Ming Zhang
  • Publication number: 20190088867
    Abstract: Memory devices and methods for fabricating memory devices have been disclosed. One such method includes forming the memory stack out of a plurality of elements. An adhesion species is formed on at least one sidewall of the memory stack wherein the adhesion species has a gradient structure that results in the adhesion species intermixing with an element of the memory stack to terminate unsatisfied atomic bonds of the element. The gradient structure further comprises a film of the adhesion species on an outer surface of the at least one sidewall.
    Type: Application
    Filed: January 29, 2018
    Publication date: March 21, 2019
    Inventors: Tsz W. Chan, Yongjun Jeff Hu, Swapnil Lengade, Shu Qin, Everett Allen McTeer
  • Patent number: 10224479
    Abstract: Memory devices and methods for fabricating memory devices have been disclosed. One such method includes forming the memory stack out of a plurality of elements. An adhesion species is formed on at least one sidewall of the memory stack wherein the adhesion species has a gradient structure that results in the adhesion species intermixing with an element of the memory stack to terminate unsatisfied atomic bonds of the element. The gradient structure further comprises a film of the adhesion species on an outer surface of the at least one sidewall. A dielectric material is implanted into the film of the adhesion species to form a sidewall liner.
    Type: Grant
    Filed: January 29, 2018
    Date of Patent: March 5, 2019
    Assignee: Micron Technology, Inc.
    Inventors: Tsz W. Chan, Yongjun Jeff Hu, Swapnil Lengade, Shu Qin, Everett Allen McTeer
  • Patent number: 10177198
    Abstract: Memory devices and methods for fabricating memory devices have been disclosed. One such memory device includes a first electrode material formed on a word line material. A selector device material is formed on the first electrode material. A second electrode material is formed on the selector device material. A phase change material is formed on the second electrode material. A third electrode material is formed on the phase change material. An adhesion species is plasma doped into sidewalls of the memory stack and a liner material is formed on the sidewalls of the memory stack. The adhesion species intermixes with an element of the memory stack and the sidewall liner to terminate unsatisfied atomic bonds of the element and the sidewall liner.
    Type: Grant
    Filed: June 5, 2017
    Date of Patent: January 8, 2019
    Assignee: Micron Technology, Inc.
    Inventors: Yongjun Jeff Hu, Tsz W. Chan, Swapnil Lengade, Everett Allen McTeer, Shu Qin