Patents by Inventor Shu-Wen Lin

Shu-Wen Lin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11968869
    Abstract: An electronic device includes a flexible substrate and a conductive wire. The conductive wire is disposed on the flexible substrate and includes a metal portion and a plurality of openings disposed in the metal portion. The metal portion includes a plurality of extending portions and a plurality of joint portions, and each of the openings is surrounded by two of the plurality of extending portions and two of the plurality of joint portions. A ratio of a sum of widths of the plurality of extending portions to a sum of widths of the plurality of joint portions is in a range from 0.8 to 1.2.
    Type: Grant
    Filed: April 28, 2022
    Date of Patent: April 23, 2024
    Assignee: InnoLux Corporation
    Inventors: Ya-Wen Lin, Chien-Chih Chen, Yen-Hsi Tu, Cheng-Wei Chang, Shu-Hui Yang
  • Patent number: 11955397
    Abstract: A semiconductor structure is provided. The semiconductor structure includes a substrate, a channel layer, a barrier layer, a compound semiconductor layer, a gate electrode, and a stack of dielectric layers. The channel layer is disposed on the substrate. The barrier layer is disposed on the channel layer. The compound semiconductor layer is disposed on the barrier layer. The gate electrode is disposed on the compound semiconductor layer. The stack of dielectric layers is disposed on the gate electrode. The stack of dielectric layers includes layers having different etching rates.
    Type: Grant
    Filed: November 9, 2020
    Date of Patent: April 9, 2024
    Assignee: Vanguard International Semiconductor Corporation
    Inventors: Shin-Cheng Lin, Cheng-Wei Chou, Ting-En Hsieh, Yi-Han Huang, Kwang-Ming Lin, Yung-Fong Lin, Cheng-Tao Chou, Chi-Fu Lee, Chia-Lin Chen, Shu-Wen Chang
  • Publication number: 20240097007
    Abstract: A semiconductor device is described. An isolation region is disposed on the substrate. A plurality of channels extend through the isolation region from the substrate. The channels including an active channel and an inactive channel. A dummy fin is disposed on the isolation region and between the active channel and the inactive channel. An active gate is disposed over the active channel and the inactive channel, and contacts the isolation region. A dielectric material extends through the active gate and contacts a top of the dummy fin. The inactive channel is a closest inactive channel to the dielectric material. A long axis of the active channel extends in a first direction. A long axis of the active gate extends in a second direction. The active channel extends in a third direction from the substrate. The dielectric material is closer to the inactive channel than to the active channel.
    Type: Application
    Filed: November 22, 2023
    Publication date: March 21, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shih-Yao Lin, Hsiao Wen Lee, Ya-Yi Tsai, Shu-Uei Jang, Chih-Han Lin, Shu-Yuan Ku
  • Patent number: 11934027
    Abstract: An optical system affixed to an electronic apparatus is provided, including a first optical module, a second optical module, and a third optical module. The first optical module is configured to adjust the moving direction of a first light from a first moving direction to a second moving direction, wherein the first moving direction is not parallel to the second moving direction. The second optical module is configured to receive the first light moving in the second moving direction. The first light reaches the third optical module via the first optical module and the second optical module in sequence. The third optical module includes a first photoelectric converter configured to transform the first light into a first image signal.
    Type: Grant
    Filed: June 21, 2022
    Date of Patent: March 19, 2024
    Assignee: TDK TAIWAN CORP.
    Inventors: Chao-Chang Hu, Chih-Wei Weng, Chia-Che Wu, Chien-Yu Kao, Hsiao-Hsin Hu, He-Ling Chang, Chao-Hsi Wang, Chen-Hsien Fan, Che-Wei Chang, Mao-Gen Jian, Sung-Mao Tsai, Wei-Jhe Shen, Yung-Ping Yang, Sin-Hong Lin, Tzu-Yu Chang, Sin-Jhong Song, Shang-Yu Hsu, Meng-Ting Lin, Shih-Wei Hung, Yu-Huai Liao, Mao-Kuo Hsu, Hsueh-Ju Lu, Ching-Chieh Huang, Chih-Wen Chiang, Yu-Chiao Lo, Ying-Jen Wang, Shu-Shan Chen, Che-Hsiang Chiu
  • Publication number: 20240088223
    Abstract: In a method of manufacturing a semiconductor device, a field effect transistor (FET) having a metal gate structure, a source and a drain over a substrate is formed. A first frontside contact disposed between dummy metal gate structures is formed over an isolation insulating layer. A frontside wiring layer is formed over the first frontside contact. A part of the substrate is removed from a backside of the substrate so that a bottom of the isolation insulating layer is exposed. A first opening is formed in the isolation insulating layer from the bottom of the isolation insulating layer to expose a bottom of the first frontside contact. A first backside contact is formed by filling the first opening with a conductive material to connect the first frontside contact.
    Type: Application
    Filed: March 24, 2023
    Publication date: March 14, 2024
    Inventors: Shu-Wen SHEN, Yen-Po Lin, Chun-Han Chen
  • Patent number: 10297455
    Abstract: A method for forming a gate oxide layer on a substrate is provided, in which a region of the substrate is defined out by a shallow trench isolation (STI) structure. An oxide layer covers over the substrate and a mask layer with an opening to expose oxide layer corresponding to the region with an interface edge of the STI structure. The method includes forming a silicon spacer on a sidewall of the opening. A cleaning process is performed through the opening to expose the substrate at the region. An oxidation process is performed on the substrate at the region to form the gate oxide layer, wherein the silicon spacer is also oxidized to merge to an edge of the gate oxide layer.
    Type: Grant
    Filed: October 13, 2016
    Date of Patent: May 21, 2019
    Assignee: United Microelectronics Corp.
    Inventors: Shih-Yin Hsiao, Shu-Wen Lin, Ke-Feng Lin, Hsin-Liang Liu, Chang-Lin Chen
  • Patent number: 10276652
    Abstract: A schottky diode includes a schottky junction, an ohmic junction, a first isolation structure and a plurality of doped regions. The schottky junction includes a first well in a substrate and a first electrode contacting the first well. The ohmic junction includes a junction region in the first well and a second electrode contacting the junction region. The first isolation structure is disposed in the substrate and separates the schottky junction from the ohmic junction. The doped regions are located in the first well and under the schottky junction, wherein the doped regions separating from each other constitute a top-view profile of concentric circles.
    Type: Grant
    Filed: June 11, 2018
    Date of Patent: April 30, 2019
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Cheng-Hua Yang, Ke-Feng Lin, Ming-Tsung Lee, Shih-Teng Huang, Chih-Chung Wang, Chiu-Te Lee, Shu-Wen Lin
  • Publication number: 20180108528
    Abstract: A method for forming a gate oxide layer on a substrate is provided, in which a region of the substrate is defined out by a shallow trench isolation (STI) structure. An oxide layer covers over the substrate and a mask layer with an opening to expose oxide layer corresponding to the region with an interface edge of the STI structure. The method includes forming a silicon spacer on a sidewall of the opening. A cleaning process is performed through the opening to expose the substrate at the region. An oxidation process is performed on the substrate at the region to form the gate oxide layer, wherein the silicon spacer is also oxidized to merge to an edge of the gate oxide layer.
    Type: Application
    Filed: October 13, 2016
    Publication date: April 19, 2018
    Applicant: United Microelectronics Corp.
    Inventors: Shih-Yin Hsiao, Shu-Wen Lin, Ke-Feng Lin, Hsin-Liang Liu, Chang-Lin Chen
  • Patent number: 9852952
    Abstract: A method for fabricating semiconductor device is disclosed. The method includes the steps of: providing a substrate having a logic region and high-voltage (HV) region; forming a first gate structure on the logic region and a second gate structure on the HV region; forming an interlayer dielectric (ILD) layer around the first gate structure and the second gate structure; forming a patterned hard mask on the HV region; and transforming the first gate structure into a metal gate.
    Type: Grant
    Filed: October 28, 2015
    Date of Patent: December 26, 2017
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chih-Chung Wang, Shih-Yin Hsiao, Wen-Fang Lee, Nien-Chung Li, Shu-Wen Lin
  • Publication number: 20170125297
    Abstract: A method for fabricating semiconductor device is disclosed. The method includes the steps of: providing a substrate having a logic region and high-voltage (HV) region; forming a first gate structure on the logic region and a second gate structure on the HV region; forming an interlayer dielectric (ILD) layer around the first gate structure and the second gate structure; forming a patterned hard mask on the HV region; and transforming the first gate structure into a metal gate.
    Type: Application
    Filed: October 28, 2015
    Publication date: May 4, 2017
    Inventors: Chih-Chung Wang, Shih-Yin Hsiao, Wen-Fang Lee, Nien-Chung Li, Shu-Wen Lin
  • Patent number: 9484422
    Abstract: The present invention provides a high-voltage metal-oxide-semiconductor (HVMOS) transistor comprising a substrate, a gate dielectric layer, a gate electrode and a source and drain region. The gate dielectric layer is disposed on the substrate and includes a protruded portion and a recessed portion, wherein the protruded portion is disposed adjacent to two sides of the recessed portion and has a thickness greater than a thickness of the recessed portion. The gate electrode is disposed on the gate dielectric layer. Thus, the protruded portion of the gate dielectric layer can maintain a higher breakdown voltage, thereby keeping the current from leaking through the gate.
    Type: Grant
    Filed: October 14, 2015
    Date of Patent: November 1, 2016
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Kun-Huang Yu, Shih-Yin Hsiao, Wen-Fang Lee, Shu-Wen Lin, Kuan-Chuan Chen
  • Publication number: 20160043193
    Abstract: The present invention provides a high-voltage metal-oxide-semiconductor (HVMOS) transistor comprising a substrate, a gate dielectric layer, a gate electrode and a source and drain region. The gate dielectric layer is disposed on the substrate and includes a protruded portion and a recessed portion, wherein the protruded portion is disposed adjacent to two sides of the recessed portion and has a thickness greater than a thickness of the recessed portion. The gate electrode is disposed on the gate dielectric layer. Thus, the protruded portion of the gate dielectric layer can maintain a higher breakdown voltage, thereby keeping the current from leaking through the gate.
    Type: Application
    Filed: October 14, 2015
    Publication date: February 11, 2016
    Inventors: Kun-Huang Yu, Shih-Yin Hsiao, Wen-Fang Lee, Shu-Wen Lin, Kuan-Chuan Chen
  • Patent number: 9236471
    Abstract: A semiconductor structure comprises a substrate having a first conductive type; a deep well having a second conductive type formed in the substrate; a first well having the first conductive type and a second well having the second conductive type both formed in the deep well and the second well spaced apart from the first well; a gate electrode formed on the substrate and disposed between the first and second wells; an isolation extending down from the surface of the substrate and disposed between the gate electrode and the second well; a conductive plug including a first portion and a second portion electrically connected to each other, and the first portion electrically connected to the gate electrode, and the second portion penetrating into the isolation. The bottom surface of the second portion of the conductive plug is covered by the isolation.
    Type: Grant
    Filed: April 15, 2014
    Date of Patent: January 12, 2016
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chiu-Te Lee, Ke-Feng Lin, Shu-Wen Lin, Kun-Huang Yu, Chih-Chung Wang, Te-Yuan Wu
  • Patent number: 9196695
    Abstract: The present invention provides a high-voltage metal-oxide-semiconductor (HVMOS) transistor comprising a substrate, a gate dielectric layer, a gate electrode and a source and drain region. The gate dielectric layer is disposed on the substrate and includes a protruded portion and a recessed portion, wherein the protruded portion is disposed adjacent to two sides of the recessed portion and has a thickness greater than a thickness of the recessed portion. The gate electrode is disposed on the gate dielectric layer. Thus, the protruded portion of the gate dielectric layer can maintain a higher breakdown voltage, thereby keeping the current from leaking through the gate.
    Type: Grant
    Filed: May 8, 2014
    Date of Patent: November 24, 2015
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Kun-Huang Yu, Shih-Yin Hsiao, Wen-Fang Lee, Shu-Wen Lin, Kuan-Chuan Chen
  • Publication number: 20150287797
    Abstract: The present invention provides a high-voltage metal-oxide-semiconductor (HVMOS) transistor comprising a substrate, a gate dielectric layer, a gate electrode and a source and drain region. The gate dielectric layer is disposed on the substrate and includes a protruded portion and a recessed portion, wherein the protruded portion is disposed adjacent to two sides of the recessed portion and has a thickness greater than a thickness of the recessed portion. The gate electrode is disposed on the gate dielectric layer. Thus, the protruded portion of the gate dielectric layer can maintain a higher breakdown voltage, thereby keeping the current from leaking through the gate.
    Type: Application
    Filed: May 8, 2014
    Publication date: October 8, 2015
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Kun-Huang Yu, Shih-Yin Hsiao, Wen-Fang Lee, Shu-Wen Lin, Kuan-Chuan Chen
  • Patent number: 9136375
    Abstract: A semiconductor structure is provided. The semiconductor structure comprises a substrate, a deep well formed in the substrate, a first well and a second well formed in the deep well, a gate electrode formed on the substrate and disposed between the first well and the second well, a first isolation, and a second isolation. The second well is spaced apart from the first well. The first isolation extends down from the surface of the substrate and is disposed between the gate electrode and the second well. The second isolation extends down from the surface of the substrate and is adjacent to the first well. A ratio of a depth of the first isolation to a depth of the second isolation is smaller than 1.
    Type: Grant
    Filed: November 21, 2013
    Date of Patent: September 15, 2015
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chiu-Te Lee, Ming-Shun Hsu, Ke-Feng Lin, Chih-Chung Wang, Hsuan-Po Liao, Shih-Teng Huang, Shu-Wen Lin, Su-Hwa Tsai, Shih-Yin Hsiao
  • Publication number: 20150145034
    Abstract: A LDMOS structure including a semiconductor substrate, a drain region, a lightly doped drain (LDD) region, a source region and a gate structure is provided. The substrate has a trench. The drain region is formed in the semiconductor substrate under the trench. A LDD region is formed in the semiconductor substrate at a sidewall of the trench. The source region is formed in the semiconductor substrate. The gate structure is formed on a surface of the semiconductor substrate above the LDD region between the drain region and the source region. A method for manufacturing the LDMOS structure is also provided.
    Type: Application
    Filed: November 24, 2013
    Publication date: May 28, 2015
    Applicant: UNITED MICROELECTRONICS CORPORATION
    Inventors: Chiu-Te Lee, Kuan-Yu Chen, Ming-Shun Hsu, Chih-Chung Wang, Ke-Feng Lin, Shu-Wen Lin, Shih-Teng Huang, Kun-Huang Yu
  • Publication number: 20150137228
    Abstract: A semiconductor structure is provided. The semiconductor structure comprises a substrate, a deep well formed in the substrate, a first well and a second well formed in the deep well, a gate electrode formed on the substrate and disposed between the first well and the second well, a first isolation, and a second isolation. The second well is spaced apart from the first well. The first isolation extends down from the surface of the substrate and is disposed between the gate electrode and the second well. The second isolation extends down from the surface of the substrate and is adjacent to the first well. A ratio of a depth of the first isolation to a depth of the second isolation is smaller than 1.
    Type: Application
    Filed: November 21, 2013
    Publication date: May 21, 2015
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Chiu-Te Lee, Ming-Shun Hsu, Ke-Feng Lin, Chih-Chung Wang, Hsuan-Po Liao, Shih-Teng Huang, Shu-Wen Lin, Su-Hwa Tsai, Shih-Yin Hsiao
  • Publication number: 20140225192
    Abstract: A semiconductor structure comprises a substrate having a first conductive type; a deep well having a second conductive type formed in the substrate; a first well having the first conductive type and a second well having the second conductive type both formed in the deep well and the second well spaced apart from the first well; a gate electrode formed on the substrate and disposed between the first and second wells; an isolation extending down from the surface of the substrate and disposed between the gate electrode and the second well; a conductive plug including a first portion and a second portion electrically connected to each other, and the first portion electrically connected to the gate electrode, and the second portion penetrating into the isolation. The bottom surface of the second portion of the conductive plug is covered by the isolation.
    Type: Application
    Filed: April 15, 2014
    Publication date: August 14, 2014
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Chiu-Te Lee, Ke-Feng Lin, Shu-Wen Lin, Kun-Huang Yu, Chih-Chung Wang, Te-Yuan Wu
  • Patent number: 8766358
    Abstract: A semiconductor structure comprises a substrate having a first conductive type; a deep well having a second conductive type formed in the substrate and extending down from a surface of the substrate; a first well having the first conductive type and a second well having the second conductive type both formed in the deep well and extending down from the surface of the substrate, and the second well spaced apart from the first well; a gate electrode formed on the substrate and disposed between the first and second wells; an isolation extending down from the surface of the substrate and disposed between the gate electrode and the second well; a conductive plug including a first portion and a second portion electrically connected to each other, and the first portion electrically connected to the gate electrode, and the second portion penetrating into the isolation.
    Type: Grant
    Filed: April 24, 2012
    Date of Patent: July 1, 2014
    Assignee: United Microelectronics Corp.
    Inventors: Chiu-Te Lee, Ke-Feng Lin, Shu-Wen Lin, Kun-Huang Yu, Chih-Chung Wang, Te-Yuan Wu