Patents by Inventor Shu Wen Samantha Ho

Shu Wen Samantha Ho has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11952422
    Abstract: Antigen-binding domains that are capable of binding to CD3 and CD137 but do not bind to CD3 and CD137 at the same time and methods of using the same are provided. Methods to obtain antigen binding domains which bind to two or more different antigen more efficiently are also provided.
    Type: Grant
    Filed: December 4, 2018
    Date of Patent: April 9, 2024
    Assignee: Chugai Seiyaku Kabushiki Kaisha
    Inventors: Shun Shimizu, Shu Wen Samantha Ho, Naoka Hironiwa, Mika Sakurai, Taro Miyazaki, Tomoyuki Igawa
  • Publication number: 20240010725
    Abstract: The disclosure provides multispecific antigen-binding molecules that comprise a first antigen-binding moiety and a second antigen-binding moiety, each of which is capable of binding to CD3 and CD137, but does not bind to CD3 and CD137 at the same time; and a third antigen-binding moiety that is capable of binding to DLL3, preferably human DLL3, which induce T-cell dependent cytotoxity more efficiently whilst circumventing adverse toxicity concerns or side effects that other multispecific antigen-binding molecules may have. The present invention provides multispecific antigen-binding molecules and pharmaceutical compositions that can treat various cancers, especially those associated with DLL3, by comprising the antigen-binding molecule as an active ingredient.
    Type: Application
    Filed: June 29, 2023
    Publication date: January 11, 2024
    Applicant: Chugai Seiyaku Kabushiki Kaisha
    Inventors: Sotaro Naoi, Shu Feng, Tomoyuki Igawa, Shu Wen Samantha Ho
  • Patent number: 11718672
    Abstract: The disclosure provides multispecific antigen-binding molecules that comprise a first antigen-binding moiety and a second antigen-binding moiety, each of which is capable of binding to CD3 and CD137, but does not bind to CD3 and CD137 at the same time; and a third antigen-binding moiety that is capable of binding to DLL3, preferably human DLL3, which induce T-cell dependent cytotoxity more efficiently whilst circumventing adverse toxicity concerns or side effects that other multispecific antigen-binding molecules may have. The present invention provides multispecific antigen-binding molecules and pharmaceutical compositions that can treat various cancers, especially those associated with DLL3, by comprising the antigen-binding molecule as an active ingredient.
    Type: Grant
    Filed: February 14, 2022
    Date of Patent: August 8, 2023
    Assignee: Chugai Seiyaki Kabushiki Kaisha
    Inventors: Sotaro Naoi, Shu Feng, Tomoyuki Igawa, Shu Wen Samantha Ho
  • Publication number: 20220251201
    Abstract: The disclosure provides multispecific antigen-binding molecules that comprise a first antigen-binding moiety and a second antigen-binding moiety, each of which is capable of binding to CD3 and CD137, but does not bind to CD3 and CD137 at the same time; and a third antigen-binding moiety that is capable of binding to DLL3, preferably human DLL3, which induce T-cell dependent cytotoxity more efficiently whilst circumventing adverse toxicity concerns or side effects that other multispecific antigen-binding molecules may have. The present invention provides multispecific antigen-binding molecules and pharmaceutical compositions that can treat various cancers, especially those associated with DLL3, by comprising the antigen-binding molecule as an active ingredient.
    Type: Application
    Filed: February 14, 2022
    Publication date: August 11, 2022
    Applicant: Chugai Seiyaku Kabushiki Kaisha
    Inventors: Sotaro Naoi, Shu Feng, Tomoyuki Igawa, Shu Wen Samantha Ho
  • Publication number: 20220112296
    Abstract: An antigen-binding molecule capable of binding to multiple different antigens (e.g., CD3 on T cells, and CD137 on T cells, NK cells, DC cells, and/or the like), but does not nonspecifically crosslink two or more immune cells such as T cells is provided. Such multispecific antigen-binding molecule is capable of modulating and/or activating an immune response while circumventing the cross-linking between different cells (e.g., different T cells) resulting from the binding of a conventional multispecific antigen-binding molecule to antigens expressed on the different cells, which is considered to be responsible for adverse reactions when the multispecific antigen-binding molecule is used as a drug.
    Type: Application
    Filed: September 27, 2019
    Publication date: April 14, 2022
    Applicant: Chugai Seiyaku Kabushiki Kaisha
    Inventors: Tomoyuki Igawa, Shu Feng, Shu Wen Samantha Ho, Hirotake Shiraiwa
  • Patent number: 11274151
    Abstract: The disclosure provides multispecific antigen-binding molecules that comprise a first antigen-binding moiety and a second antigen-binding moiety, each of which is capable of binding to CD3 and CD137, but does not bind to CD3 and CD137 at the same time; and a third antigen-binding moiety that is capable of binding to DLL3, preferably human DLL3, which induce T-cell dependent cytotoxity more efficiently whilst circumventing adverse toxicity concerns or side effects that other multispecific antigen-binding molecules may have. The present invention provides multispecific antigen-binding molecules and pharmaceutical compositions that can treat various cancers, especially those associated with DLL3, by comprising the antigen-binding molecule as an active ingredient.
    Type: Grant
    Filed: March 30, 2021
    Date of Patent: March 15, 2022
    Assignee: Chugai Seiyaku Kabushiki Kaisha
    Inventors: Sotaro Naoi, Shu Feng, Tomoyuki Igawa, Shu Wen Samantha Ho
  • Publication number: 20210388087
    Abstract: The present invention relates to antigen-binding molecules binding to CD3 and CD137 (4-1BB); compositions comprising the antigen-binding molecule; and methods of using the same. The present invention provides antigen-binding molecules comprising: an antibody variable region that is capable of binding to CD3 and CD137 (4-1BB), but does not bind to CD3 and CD137 at the same time; and a variable region binding to a third antigen different from CD3 and CD137. Such antigen binding molecules exhibit enhanced T-cell dependent cytotoxity activity induced by these antigen-binding molecules through binding to the three different antigens.
    Type: Application
    Filed: September 27, 2019
    Publication date: December 16, 2021
    Applicant: Chugai Seiyaku Kabushiki Kaisha
    Inventors: Shu Wen Samantha Ho, Shu Feng
  • Publication number: 20210301016
    Abstract: The disclosure provides multispecific antigen-binding molecules that comprise a first antigen-binding moiety and a second antigen-binding moiety, each of which is capable of binding to CD3 and CD137, but does not bind to CD3 and CD137 at the same time; and a third antigen-binding moiety that is capable of binding to DLL3, preferably human DLL3, which induce T-cell dependent cytotoxity more efficiently whilst circumventing adverse toxicity concerns or side effects that other multispecific antigen-binding molecules may have. The present invention provides multispecific antigen-binding molecules and pharmaceutical compositions that can treat various cancers, especially those associated with DLL3, by comprising the antigen-binding molecule as an active ingredient.
    Type: Application
    Filed: March 30, 2021
    Publication date: September 30, 2021
    Applicant: Chugai Seiyaku Kabushiki Kaisha
    Inventors: Sotaro Naoi, Shu Feng, Tomoyuki Igawa, Shu Wen Samantha Ho
  • Publication number: 20200377595
    Abstract: Antigen-binding domains that are capable of binding to CD3 and CD137 but do not bind to CD3 and CD137 at the same time and methods of using the same are provided. Methods to obtain antigen binding domains which bind to two or more different antigen more efficiently are also provided.
    Type: Application
    Filed: December 4, 2018
    Publication date: December 3, 2020
    Applicant: Chugai Seiyaku Kabushiki Kaisha
    Inventors: Shun Shimizu, Shu Wen Samantha Ho, Naoka Hironiwa, Mika Sakurai, Taro Miyazaki, Tomoyuki Igawa
  • Publication number: 20200123256
    Abstract: The present invention provides multispecific antigen-binding molecules that comprise a first antigen-binding domain having RNF43-binding activity and a second antigen-binding domain having T cell receptor complex-binding activity, uses of such multispecific antigen-binding molecules, etc. The present inventors discovered novel multispecific antigen-binding molecules with excellent cellular cytotoxicity and high stability, which comprise a first antigen-binding domain having RNF43-binding activity and a second antigen-binding domain having T cell receptor complex-binding activity. Since the molecules of the present invention show a strong cytotoxicity against cells and tissues expressing RNF43, it is possible to produce novel pharmaceutical compositions comprising the multispecific antigen-binding molecules for treating or preventing various cancers.
    Type: Application
    Filed: May 2, 2018
    Publication date: April 23, 2020
    Applicant: Chugai Seiyaku Kabushiki Kaisha
    Inventors: Mayumi Hoshino, Yumiko Kawai, Takahiro Ishiguro, Satoshi Aida, Yoshinao Ruike, Shu Wen Samantha Ho, Shuet Theng Lee