Patents by Inventor Shuai DU

Shuai DU has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200127613
    Abstract: An audio processing circuit includes a cascade operational amplifier circuit, an output node, and a pull-down circuit. The cascade operational amplifier circuit includes a first operational amplifier circuit and a second operational amplifier circuit. The first operational amplifier circuit includes a main operational amplifier and a secondary operational amplifier that are connected in parallel. The pull-down circuit is configured to pull down a voltage at the output node after the first operational amplifier circuit is turned on. The second operational amplifier circuit is configured to, after the secondary operational amplifier is turned on, control a voltage gain of the secondary operational amplifier to change gradually from low to high.
    Type: Application
    Filed: December 19, 2019
    Publication date: April 23, 2020
    Inventors: Deyang Yin, Jun Li, Ding Li, Shuai Du
  • Patent number: 10608653
    Abstract: Embodiments of the present invention provide a digital-to-analog conversion circuit, where the digital-to-analog conversion circuit includes a signal amplitude detector and a digital-to-analog converter. When the signal amplitude detector detects a low signal amplitude, a first current module in the digital-to-analog converter operates normally and a second current module in the digital-to-analog converter stops operating. In addition, when stopping operating, the second current module is in a state of a third bias voltage and a fourth bias voltage that are generated by a second bias circuit. When the amplitude detector detects a high signal amplitude subsequently, the second current module resumes normal operation. After operating normally, the second current module switches back to a first bias voltage and a second bias voltage that are generated by a first bias circuit. This reduces a nonlinearity problem caused before a second current module resumes normal operation.
    Type: Grant
    Filed: January 23, 2019
    Date of Patent: March 31, 2020
    Assignee: HUAWEI TECHNOLOGIES CO., LTD.
    Inventors: Ding Li, Shuai Du, Hongpei Wang
  • Patent number: 10560054
    Abstract: A circuit system including an operational amplification circuit is disclosed. The operational amplification circuit includes N stages of operational amplification units that are cascaded, an input terminal of the 1st stage of operational amplification unit is an input terminal of the operational amplification circuit, and an output terminal of the Nth stage of operational amplification unit is an output terminal of the operational amplification circuit; an output terminal of the ith stage of operational amplification unit is connected to an input terminal of the (i+1)th stage of operational amplification unit, so as to provide an input signal for the (i+1)th stage of operational amplification unit; and there is a feedback channel from the output terminal of the Nth stage of operational amplification unit to an input terminal of each of the 1st stage of operational amplification unit to the Nth stage of operational amplification unit.
    Type: Grant
    Filed: February 28, 2018
    Date of Patent: February 11, 2020
    Assignee: HUAWEI TECHNOLOGIES CO., LTD.
    Inventors: Ding Li, Shuai Du, Yixing Chu
  • Publication number: 20200045417
    Abstract: A pop sound suppression method, an audio output circuit, and a terminal suppress a pop sound that is generated when an audio output circuit is in an alternating current (AC) coupling structure. The output circuit includes an output power amplifier, a common-mode voltage buffer, a reference voltage generation circuit, a powered-on pop sound suppression switch, and a common-mode switch. The powered-on pop sound suppression switch is configured to control, in a power-on process of the audio output circuit, a voltage level of an output node to be zero. The common-mode switch is configured to control, when a reference voltage level of the reference voltage generation circuit is zero, the voltage level of the output node to be equal to the reference level.
    Type: Application
    Filed: October 14, 2019
    Publication date: February 6, 2020
    Inventors: Ding Li, Shuai Du, Jun Li, Deyang Yin
  • Publication number: 20190229739
    Abstract: Embodiments of the present invention provide a digital-to-analog conversion circuit, where the digital-to-analog conversion circuit includes a signal amplitude detector and a digital-to-analog converter. When the signal amplitude detector detects a low signal amplitude, a first current module in the digital-to-analog converter operates normally and a second current module in the digital-to-analog converter stops operating. In addition, when stopping operating, the second current module is in a state of a third bias voltage and a fourth bias voltage that are generated by a second bias circuit. When the amplitude detector detects a high signal amplitude subsequently, the second current module resumes normal operation. After operating normally, the second current module switches back to a first bias voltage and a second bias voltage that are generated by a first bias circuit. This reduces a nonlinearity problem caused before a second current module resumes normal operation.
    Type: Application
    Filed: January 23, 2019
    Publication date: July 25, 2019
    Inventors: Ding LI, Shuai Du, Hongpei Wang
  • Patent number: 10224947
    Abstract: Embodiments of the present invention provide a digital-to-analog conversion circuit, where the digital-to-analog conversion circuit includes a signal amplitude detector and a digital-to-analog converter. When the signal amplitude detector detects a low signal amplitude, a first current module in the digital-to-analog converter operates normally and a second current module in the digital-to-analog converter stops operating. In addition, when stopping operating, the second current module is in a state of a third bias voltage and a fourth bias voltage that are generated by a second bias circuit. When the amplitude detector detects a high signal amplitude subsequently, the second current module resumes normal operation. After operating normally, the second current module switches back to a first bias voltage and a second bias voltage that are generated by a first bias circuit. This reduces a nonlinearity problem caused before a second current module resumes normal operation.
    Type: Grant
    Filed: December 29, 2017
    Date of Patent: March 5, 2019
    Assignee: HUAWEI TECHNOLOGIES CO., LTD.
    Inventors: Ding Li, Shuai Du, Hongpei Wang
  • Publication number: 20180248520
    Abstract: A circuit system including an operational amplification circuit is disclosed. The operational amplification circuit includes N stages of operational amplification units that are cascaded, an input terminal of the 1st stage of operational amplification unit is an input terminal of the operational amplification circuit, and an output terminal of the Nth stage of operational amplification unit is an output terminal of the operational amplification circuit; an output terminal of the ith stage of operational amplification unit is connected to an input terminal of the (i+1)th stage of operational amplification unit, so as to provide an input signal for the (i+1)th stage of operational amplification unit; and there is a feedback channel from the output terminal of the Nth stage of operational amplification unit to an input terminal of each of the 1st stage of operational amplification unit to the Nth stage of operational amplification unit.
    Type: Application
    Filed: February 28, 2018
    Publication date: August 30, 2018
    Inventors: Ding Li, Shuai Du, Yixing Chu
  • Publication number: 20180191363
    Abstract: Embodiments of the present invention provide a digital-to-analog conversion circuit, where the digital-to-analog conversion circuit includes a signal amplitude detector and a digital-to-analog converter. When the signal amplitude detector detects a low signal amplitude, a first current module in the digital-to-analog converter operates normally and a second current module in the digital-to-analog converter stops operating. In addition, when stopping operating, the second current module is in a state of a third bias voltage and a fourth bias voltage that are generated by a second bias circuit. When the amplitude detector detects a high signal amplitude subsequently, the second current module resumes normal operation. After operating normally, the second current module switches back to a first bias voltage and a second bias voltage that are generated by a first bias circuit. This reduces a nonlinearity problem caused before a second current module resumes normal operation.
    Type: Application
    Filed: December 29, 2017
    Publication date: July 5, 2018
    Inventors: Ding LI, Shuai DU, Hongpei WANG