Patents by Inventor Shuaifeng Zhang

Shuaifeng Zhang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11843109
    Abstract: The present invention discloses a preparation method to make lithium selenium secondary battery cathode materials with a high energy density and stable electrochemical performances. Two dimensional carbon materials prepared from the presently-disclosed method is not only made from readily-available low-cost raw materials, but is also of simple preparation method. It can effectively shorten the migration distance of lithium ions in the charging and discharging process and improve conductivity and utilization of selenium after compounded with carbon and selenium; the selenium carbon cathode material can be assembled into lithium selenium secondary batteries with high energy density and stable electrochemical performances. By further scaling up, the assembled lithium selenium pouch-cell batteries still hold excellent electrochemical performances and high energy density, showing broad application prospects.
    Type: Grant
    Filed: May 30, 2019
    Date of Patent: December 12, 2023
    Assignee: II-VI DELAWARE, INC.
    Inventors: Yu-Guo Guo, Shuaifeng Zhang, Yaxia Yin
  • Publication number: 20220407049
    Abstract: An immobilized selenium body, made from carbon and selenium and optionally sulfur, makes selenium more stable, requiring a higher temperature or an increase in kinetic energy for selenium to escape from the immobilized selenium body and enter a gas system, as compared to selenium alone Immobilized selenium localized in a carbon skeleton can be utilized in a rechargeable battery Immobilization of the selenium can impart compression stress on both the carbon skeleton and the selenium. Such compression stress enhances the electrical conductivity in the carbon skeleton and among the selenium particles and creates an interface for electrons to be delivered and or harvested in use of the battery. A rechargeable battery made from immobilized selenium can be charged or discharged at a faster rate over conventional batteries and can demonstrate excellent cycling stability.
    Type: Application
    Filed: August 31, 2022
    Publication date: December 22, 2022
    Inventors: Elgin E. EISSLER, Wen-Qing XU, Xiaoming LI, Yancheng ZHANG, Shailesh PATKAR, Giovanni BARBAROSSA, Yu-Guo GUO, Shuaifeng ZHANG, Yaxia YIN
  • Patent number: 11515518
    Abstract: An immobilized selenium body, made from carbon and selenium and optionally sulfur, makes selenium more stable, requiring a higher temperature or an increase in kinetic energy for selenium to escape from the immobilized selenium body and enter a gas system, as compared to selenium alone. Immobilized selenium localized in a carbon skeleton can be utilized in a rechargeable battery. Immobilization of the selenium can impart compression stress on both the carbon skeleton and the selenium. Such compression stress enhances the electrical conductivity in the carbon skeleton and among the selenium particles and creates an interface for electrons to be delivered and or harvested in use of the battery. A rechargeable battery made from immobilized selenium can be charged or discharged at a faster rate over conventional batteries and can demonstrate excellent cycling stability.
    Type: Grant
    Filed: June 11, 2020
    Date of Patent: November 29, 2022
    Assignees: INSTITUTE OF CHEMISTRY, CHINESE ACADEMY OF SCIENCES, II-VI DELAWARE, INC.
    Inventors: Elgin E. Eissler, Wen-Qing Xu, Yancheng Zhang, Xiaoming Li, Shailesh Patkar, Giovanni Barbarossa, Yu-Guo Guo, Shuaifeng Zhang, Yaxia Yin
  • Patent number: 11482698
    Abstract: An immobilized selenium body, made from carbon and selenium and optionally sulfur, makes selenium more stable, requiring a higher temperature or an increase in kinetic energy for selenium to escape from the immobilized selenium body and enter a gas system, as compared to selenium alone. Immobilized selenium localized in a carbon skeleton can be utilized in a rechargeable battery. Immobilization of the selenium can impart compression stress on both the carbon skeleton and the selenium. Such compression stress enhances the electrical conductivity in the carbon skeleton and among the selenium particles and creates an interface for electrons to be delivered and or harvested in use of the battery. A rechargeable battery made from immobilized selenium can be charged or discharged at a faster rate over conventional batteries and can demonstrate excellent cycling stability.
    Type: Grant
    Filed: October 25, 2018
    Date of Patent: October 25, 2022
    Assignees: II-VI DELAWARE, INC., INSTITUTE OF CHEMISTRY, CHINESE ACADEMY OF SCIENCES
    Inventors: Elgin E. Eissler, Wen-Qing Xu, Xiaoming Li, Yancheng Zhang, Shailesh Patkar, Giovanni Barbarossa, Yu-Guo Guo, Shuaifeng Zhang, Yaxia Yin
  • Publication number: 20200303725
    Abstract: An immobilized selenium body, made from carbon and selenium and optionally sulfur, makes selenium more stable, requiring a higher temperature or an increase in kinetic energy for selenium to escape from the immobilized selenium body and enter a gas system, as compared to selenium alone. Immobilized selenium localized in a carbon skeleton can be utilized in a rechargeable battery. Immobilization of the selenium can impart compression stress on both the carbon skeleton and the selenium. Such compression stress enhances the electrical conductivity in the carbon skeleton and among the selenium particles and creates an interface for electrons to be delivered and or harvested in use of the battery. A rechargeable battery made from immobilized selenium can be charged or discharged at a faster rate over conventional batteries and can demonstrate excellent cycling stability.
    Type: Application
    Filed: June 11, 2020
    Publication date: September 24, 2020
    Inventors: Elgin E. Eissler, Wen-Qing Xu, Yancheng Zhang, Xiaoming Li, Shailesh Patkar, Giovanni Barbarossa, Yu-Guo Guo, Shuaifeng Zhang, Yaxia Yin
  • Patent number: 10734638
    Abstract: An immobilized selenium body, made from carbon and selenium and optionally sulfur, makes selenium more stable, requiring a higher temperature or an increase in kinetic energy for selenium to escape from the immobilized selenium body and enter a gas system, as compared to selenium alone. Immobilized selenium localized in a carbon skeleton can be utilized in a rechargeable battery. Immobilization of the selenium can impart compression stress on both the carbon skeleton and the selenium. Such compression stress enhances the electrical conductivity in the carbon skeleton and among the selenium particles and creates an interface for electrons to be delivered and or harvested in use of the battery. A rechargeable battery made from immobilized selenium can be charged or discharged at a faster rate over conventional batteries and can demonstrate excellent cycling stability.
    Type: Grant
    Filed: February 16, 2017
    Date of Patent: August 4, 2020
    Assignees: II-VI Delaware, Inc., Institute of Chemistry, Chinese Academy of Science
    Inventors: Elgin E. Eissler, Wen-Qing Xu, Xiaoming Li, Yancheng Zhang, Shailesh Patkar, Giovanni Barbarossa, Yu-Guo Guo, Shuaifeng Zhang, Yaxia Yin
  • Patent number: 10439201
    Abstract: A sulfur-carbon composite includes micro-porous carbon nanosheets and sulfur. The sulfur is loaded into the micropores of the micro-porous carbon nanosheets. The sulfur-carbon composite can be included in an electrode material. The sulfur-carbon composite can be included in a lithium-sulfur battery. A process for preparing the sulfur-carbon composite includes carbonization-activation of carbonaceous precursor, purification, and loading of sulfur into micro-porous carbon nanosheets.
    Type: Grant
    Filed: June 5, 2015
    Date of Patent: October 8, 2019
    Assignee: Robert Bosch GmbH
    Inventors: Yuguo Guo, Shuaifeng Zhang, Yaxia Yin, Yunhua Chen, NaHong Zhao
  • Publication number: 20190280285
    Abstract: The present invention discloses a preparation method to make lithium selenium secondary battery cathode materials with a high energy density and stable electrochemical performances. Two dimensional carbon materials prepared from the presently-disclosed method is not only made from readily-available low-cost raw materials, but is also of simple preparation method. It can effectively shorten the migration distance of lithium ions in the charging and discharging process and improve conductivity and utilization of selenium after compounded with carbon and selenium; the selenium carbon cathode material can be assembled into lithium selenium secondary batteries with high energy density and stable electrochemical performances. By further scaling up, the assembled lithium selenium pouch-cell batteries still hold excellent electrochemical performances and high energy density, showing broad application prospects.
    Type: Application
    Filed: May 30, 2019
    Publication date: September 12, 2019
    Inventors: Yu-Guo Guo, Shuaifeng Zhang, Yaxia Yin
  • Patent number: 10340507
    Abstract: Disclosed is method of preparing a selenium carbon composite material and a use of the selenium carbon composite material in a cathode of a lithium selenium secondary battery. A battery formed with a cathode of the disclosed selenium carbon composite material has high energy density and stable electrochemical performance. The disclosed selenium carbon composite material can effectively shorten the migration distance of lithium ions during charging and discharging of the battery and improve conductivity and utilization of selenium after compounding carbon and selenium. Multiple batteries formed with cathodes of the disclosed selenium carbon composite material can be assembled into a lithium selenium pouch-cell battery having stable electrochemical performance and high energy density.
    Type: Grant
    Filed: September 12, 2016
    Date of Patent: July 2, 2019
    Assignees: Institute of Chemistry, Chinese Academy of Sciences, II_VI Incorporated
    Inventors: Yu-Guo Guo, Shuaifeng Zhang, Yaxia Yin
  • Publication number: 20190058187
    Abstract: An immobilized selenium body, made from carbon and selenium and optionally sulfur, makes selenium more stable, requiring a higher temperature or an increase in kinetic energy for selenium to escape from the immobilized selenium body and enter a gas system, as compared to selenium alone. Immobilized selenium localized in a carbon skeleton can be utilized in a rechargeable battery. Immobilization of the selenium can impart compression stress on both the carbon skeleton and the selenium. Such compression stress enhances the electrical conductivity in the carbon skeleton and among the selenium particles and creates an interface for electrons to be delivered and or harvested in use of the battery. A rechargeable battery made from immobilized selenium can be charged or discharged at a faster rate over conventional batteries and can demonstrate excellent cycling stability.
    Type: Application
    Filed: October 25, 2018
    Publication date: February 21, 2019
    Inventors: Elgin E. Eissler, Wen-Qing Xu, Xiaoming Li, Yancheng Zhang, Shailesh Patkar, Giovanni Barbarossa, Yu-Guo Guo, Shuaifeng Zhang, Yaxia Yin
  • Publication number: 20180159121
    Abstract: A sulfur-carbon composite includes micro-porous carbon nanosheets and sulfur. The sulfur is loaded into the micropores of the micro-porous carbon nanosheets. The sulfur-carbon composite can be included in an electrode material. The sulfur-carbon composite can be included in a lithium-sulfur battery. A process for preparing the sulfur-carbon composite includes carbonization-activation of carbonaceous precursor, purification, and loading of sulfur into micro-porous carbon nanosheets.
    Type: Application
    Filed: June 5, 2015
    Publication date: June 7, 2018
    Inventors: Yuguo Guo, Shuaifeng Zhang, Yaxia Yin, Yunhua Chen, NaHong Zhao
  • Publication number: 20170301914
    Abstract: An immobilized selenium body, made from carbon and selenium and optionally sulfur, makes selenium more stable, requiring a higher temperature or an increase in kinetic energy for selenium to escape from the immobilized selenium body and enter a gas system, as compared to selenium alone. Immobilized selenium localized in a carbon skeleton can be utilized in a rechargeable battery. Immobilization of the selenium can impart compression stress on both the carbon skeleton and the selenium. Such compression stress enhances the electrical conductivity in the carbon skeleton and among the selenium particles and creates an interface for electrons to be delivered and or harvested in use of the battery. A rechargeable battery made from immobilized selenium can be charged or discharged at a faster rate over conventional batteries and can demonstrate excellent cycling stability.
    Type: Application
    Filed: February 16, 2017
    Publication date: October 19, 2017
    Inventors: Elgin E. Eissler, Wen-Qing Xu, Xiaoming Li, Yancheng Zhang, Shailesh Patkar, Giovanni Barbarossa, Yu-Guo Guo, Shuaifeng Zhang, Yaxia Yin
  • Publication number: 20170084908
    Abstract: Disclosed is method of preparing a selenium carbon composite material and a use of the selenium carbon composite material in a cathode of a lithium selenium secondary battery. A battery formed with a cathode of the disclosed selenium carbon composite material has high energy density and stable electrochemical performance. The disclosed selenium carbon composite material can effectively shorten the migration distance of lithium ions during charging and discharging of the battery and improve conductivity and utilization of selenium after compounding carbon and selenium. Multiple batteries formed with cathodes of the disclosed selenium carbon composite material can be assembled into a lithium selenium pouch-cell battery having stable electrochemical performance and high energy density.
    Type: Application
    Filed: September 12, 2016
    Publication date: March 23, 2017
    Inventors: Yu-Guo Guo, Shuaifeng Zhang, Yaxia Yin