Patents by Inventor Shuangquan WU

Shuangquan WU has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8945501
    Abstract: A method for preparing a carbon nanotube, including: a) preparing an LPAN solution, stirring the LPAN solution at between 100 and 200° C. for between 100 and 200 hours to yield a cyclized LPAN solution; b) heating the cyclized LPAN solution at between 200 and 300° C. for between 1 and 10 hours to yield an OPAN; c) grinding, screening, and drying at room temperature the OPAN to yield a thermal oxidative precursor; d) calcining the thermal oxidative precursor at between 400 and 1000° C. for between 1 and 24 h in the presence of inert gas having a flow rate of between 10 and 500 mL/min to yield a carbonated precursor; and e) calcining the carbonated precursor at between 1000 and 1500° C. for between 1 and 10 hours in the presence of the inert gas having a flow rate of between 10 and 500 mL/min to yield a carbon nanotube material.
    Type: Grant
    Filed: September 30, 2013
    Date of Patent: February 3, 2015
    Inventors: Jianhong Liu, Jian Xu, Shuangquan Wu
  • Publication number: 20140027678
    Abstract: A method for preparing a carbon nanotube, including: a) preparing an LPAN solution, stirring the LPAN solution at between 100 and 200° C. for between 100 and 200 hours to yield a cyclized LPAN solution; b) heating the cyclized LPAN solution at between 200 and 300° C. for between 1 and 10 hours to yield an OPAN; c) grinding, screening, and drying at room temperature the OPAN to yield a thermal oxidative precursor; d) calcining the thermal oxidative precursor at between 400 and 1000° C. for between 1 and 24 h in the presence of inert gas having a flow rate of between 10 and 500 mL/min to yield a carbonated precursor; and e) calcining the carbonated precursor at between 1000 and 1500° C. for between 1 and 10 hours in the presence of the inert gas having a flow rate of between 10 and 500 mL/min to yield a carbon nanotube material.
    Type: Application
    Filed: September 30, 2013
    Publication date: January 30, 2014
    Inventors: Jianhong LIU, Jian XU, Shuangquan WU