Patents by Inventor Shuangshuang Zhang

Shuangshuang Zhang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11905378
    Abstract: A high-grafting density cyclic comb shaped polymer and its preparation method therefor. The method comprises the following steps: 1) synthesizing linear poly(pentafluorophenyl 4-vinylbenzoate) (l-PPF4VB4.0k); 2) performing photo-induced cyclization on the linear polymer to prepare the cyclic polymer (c-PPF4VB4.0k); 3) performing post modification on the cyclic polymer c-PPF4VB4.0k by using small molecules to prepare a functionalized cyclic polymer (c-P1); 4) then performing polymer post modification on the cyclic polymer (c-P1) by using an efficient click reaction to construct the high-grafting density cyclic comb shaped polymer (c-P1-g-PS); and 5) directly performing polymer post modification on the cyclic polymer c-PPF4VB4.0k by using macromolecules to construct a high-grafting density cyclic comb shaped polymer (c-PPF4VB4.0k-g-PEG), the obtained cyclic comb shaped polymer still remaining the characteristic of a narrow molecular weight distribution.
    Type: Grant
    Filed: January 4, 2021
    Date of Patent: February 20, 2024
    Assignee: SOOCHOW UNIVERSITY
    Inventors: Wei Zhang, Shuangshuang Zhang, Jieai Li, Xiulin Zhu, Zhengbiao Zhang, Nianchen Zhou
  • Publication number: 20230022196
    Abstract: The present disclosure relates to an additive used in a methionine preparation process, and a methionine preparation method. The additive provided by the present disclosure is a mixture containing components A, B, and C; component A has a structure represented by the following general formula (1); component B has a structure represented by the following general formula (2); component C is silicone oil; RCON(CH3)CH2CH2SO3Na (1). The methionine preparation method provided in the present invention comprises subjecting methionine to crystallization and/or recrystallization in the presence of the additive provided by the present disclosure. The additive provided by the present disclosure results in uniform emulsification, has good stability, can be used stably for a long time, and is suitable for a continuous crystallization process. The prepared methionine crystal has a good crystal form, a large bulk density, and good flowability.
    Type: Application
    Filed: October 20, 2020
    Publication date: January 26, 2023
    Inventors: Zhirong CHEN, Hong YIN, Zhixuan WANG, Cong CHEN, Shuangshuang ZHANG, Yu WANG
  • Patent number: 11312660
    Abstract: The present disclosure relates to a dense boron nitride ceramic with high plasticity and high elasticity and the preparation process thereof. The preparation process includes the following steps: A) weighing a predetermined amount of spherical boron nitride nano-powders with onion-like structure, pre-pressing them into a pre-pressed body and putting the pre-pressed body into a sintering mold; B) putting the pre-pressed body obtained in step A) together with the sintering mold into a spark plasma sintering apparatus or a hot-pressing sintering apparatus for sintering; and C) taking out the mold after cooling, and removing the mold to obtain the boron nitride dense ceramic block with high plasticity and high elasticity. According to the present invention, a boron nitride ceramic with high strength and high plasticity is obtained via sintering spherical boron nitride nano-powders with onion-like structure.
    Type: Grant
    Filed: March 25, 2020
    Date of Patent: April 26, 2022
    Assignee: YANSHAN UNIVERSITY
    Inventors: Zhisheng Zhao, Yang Zhang, Yingju Wu, Shuangshuang Zhang, Wentao Hu, Dongli Yu, Julong He, Bo Xu, Zhongyuan Liu, Yongjun Tian
  • Publication number: 20210122883
    Abstract: A high-grafting density cyclic comb shaped polymer and its preparation method therefor. The method comprises the following steps: 1) synthesizing linear poly(pentafluorophenyl 4-vinylbenzoate) (l-PPF4VB4.0k); 2) performing photo-induced cyclization on the linear polymer to prepare the cyclic polymer (c-PPF4VB4.0k); 3) performing post modification on the cyclic polymer c-PPF4VB4.0k by using small molecules to prepare a functionalized cyclic polymer (c-P1); 4) then performing polymer post modification on the cyclic polymer (c-P1) by using an efficient click reaction to construct the high-grafting density cyclic comb shaped polymer (c-P1-g-PS); and 5) directly performing polymer post modification on the cyclic polymer c-PPF4VB4.0k by using macromolecules to construct a high-grafting density cyclic comb shaped polymer (c-PPF4VB4.0k-g-PEG), the obtained cyclic comb shaped polymer still remaining the characteristic of a narrow molecular weight distribution.
    Type: Application
    Filed: January 4, 2021
    Publication date: April 29, 2021
    Inventors: Wei ZHANG, Shuangshuang ZHANG, Jieai LI, Xiulin ZHU, Zhengbiao ZHANG, Nianchen ZHOU
  • Publication number: 20210061719
    Abstract: The present disclosure relates to a dense boron nitride ceramic with high plasticity and high elasticity and the preparation process thereof. The preparation process includes the following steps: A) weighing a predetermined amount of spherical boron nitride nano-powders with onion-like structure, pre-pressing them into a pre-pressed body and putting the pre-pressed body into a sintering mold; B) putting the pre-pressed body obtained in step A) together with the sintering mold into a spark plasma sintering apparatus or a hot-pressing sintering apparatus for sintering; and C) taking out the mold after cooling, and removing the mold to obtain the boron nitride dense ceramic block with high plasticity and high elasticity. According to the present invention, a boron nitride ceramic with high strength and high plasticity is obtained via sintering spherical boron nitride nano-powders with onion-like structure.
    Type: Application
    Filed: March 25, 2020
    Publication date: March 4, 2021
    Inventors: Zhisheng Zhao, Yang Zhang, Yingju Wu, Shuangshuang Zhang, Wentao Hu, Dongli Yu, Julong He, Bo Xu, Zhongyuan Liu, Yongjun Tian